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6. We consider the Hamiltonian system containing a parameter
A(>0)
(14) dp/dt=—10H]/oq(p, q, t), dq/dt=20H/op(p, q, t)
in D. If (»°q%t)eD and 1>0, there is a unique solution of (14) in
D passing through (p° ¢° t°,) and prolonged as far as possible to the
both directions of the time ¢, by the regularity of H(p,q,s) in As-
sumption 1.” We denote it by
(15) p=5(, »°, ¢, t°, 2), a=q(¢, »°, ¢", &, 2).
For a fixed (p° ¢° t°)e D and a fix A(>0), (¢, »°, ¢°, t°, 2), q(¢, 2°, @°, t°, 2)
are defined on a subinterval of the time interval a<<¢<<b which may
be open, closed or half-open according to (°,¢°, ¢°, 2).0

Since a?}/as is continuous on D and D is compact, there is a
number M(>0) such that

(16) |0/0s |I<M on D.

THEOREM 3. Let a’ and b be two numbers such that a<a'<?b’
<b and (V'—a)<(JF—J¥)/(2M) and let us put J,=J}—M®b —a’),
J,=JF+M@®'—a’). Then the solution of (14) passing through (p°, q°,
a’) where (p°, ¢°)e I(J,, J,,a’) can be prolonged in D to the time interval
o’ Zt<b for every i(>0).

PrROOF. Let B8 be the least upper bound of B’ such that the
solution in D of (14), p=p(¢, »° ¢°, @', 2), ¢=4q(¢, D°, ¢°, a’, 2) for a fixed
", q")el(J,,J,,a’) and a fixed i>0, can be defined for the time
interval a’<t<p and such that a’<f'<b. Then a’<B=<d’ and this
solution in D can be defined on the the time interval a’<t<p. Since
0H/op, 0H/dq are bounded on D by their continuity on the compact set
D, the functions (¢, 2°, ¢°, @/, ) §.(t, °, @°, &', 2) (i=1,- - -, m) of t repre-
senting a solution of (14) in D, are uniformly continuous on the
interval a’<t<pB. Hence the limits

@, p°, &, @', 2)—>p'(t—>p—0)
a(t’ po, qO’ a,i ])—)Q'(t—)ﬂ—(})
exist and (9, ¢, B)eD.
We shall sometimes abbreviate (¢, 2°, ¢°, @/, 2) and q(¢, »° ¢°, a’, 2)

1) Cf. E. Kamke [1, pp. 135-136 and pp. 137-142].
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as p and q in this proof of Theorem 3.
Now for a’<t<pB, we have®

L 55,50, 2, 3,2, .0, 2,1
d I
=—3XH(p,q,t),t
5 3{H(p, q, 1), t}
17) =a—3—{H<5, 7,0, 8-2 HG, 7, 0+ 2 (HG, 5,9, 1)
{H(n,q,t), t} (n,q,t)+ {H(n,q,t) ¢}
=_ ~9 ~yt
P (n %)
since we can easily verify that
d ~ o~ oH ,~ .
’—'H ' Yy )=— ’ 9t
7 (b, 9,0 as(nq )
for the solution (p=p, ¢=q) of (14). Hence by (16) we have

I §(p,r q'r ﬁ)—ﬁ‘(p", qo’ a’l) |= pr%g(ﬁt a; t)dt

- f "_"’a_fz‘_ @, 3, t)dtl <M(B—a) <MY —a).

Hence we have
J¥=J 4+ MO —a)>50, ¢, >J,— MY —a)=J*

since J,>3(®", ¢",a’)>J, by (»°,¢")eI(J,, J, a’). Thus we have proved
that (9, ¢, B)e D and that the solution p=p(¢, »°, ¢°, @', 2), ¢=q(t, p°, ¢°,
a’,2) of (14) in D can be defined on the interval a’'<t<B.> 1If a'<p
<b’, then (9',¢,B)eD'® and the solution can be continued beyond
t=p.Y This contradicts the definition of 5. Hence 8=b'. This com-
pletes the proof of Theorem 2.

7. When a<a’<b'<h, (9°,¢")eI(a’) and 2>0, we define 4(a’,V’,
2% q° 2) as follows. We put
4, ¥, v, ¢, 2) =max| 536, 2% ¢, &, 2, 3¢, 2°, ¢° @', 2), 81— F (2", ¢°, @) |
if the solution p=p(¢, »° ¢°, @, 2), g=q(t, »°, ¢°,a’, 2) of (14) can be
continued to t=b" in D and we put

40, ¥, 1% ¢°, )=+ o0,

if the above solution of (14) can not be continued to ¢=b' in D.
When a<a’'<b'<b,2>0 and >0, we denote the subset of I(a’),
{(®° @) | (®°, ¢") e I(a’), 4(a’, ¥, P°, ¢°, ) <6} by L(a’,b’, 2,0). We can easily

2) 03J/0E{H(%,7T,t),t}, 03/0s{H(D, q,t),t} are the values of 03/0E(E, 8), 93/0s
(E, s) for §=H($, 9,%), s=t and H/9s(F, §,t), 93/0s(F, ¥,t) are the values of 0H/ds
(p, 4, 8), 03/0s(p, g, 8) for p=5, ¢=7, s=t.

3) Cf. footnote 11) of Part II.
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prove that L(a’,b’,2,6) is an open set in R* by the continuity of

& on D and by the theorems® on the dependence of the solutions
of (14) in D on the initial conditions.

In the following, we denote the m-dimensional Lebesgue measure
of a measurable set in R™ by g¢,[ 1.

LEMMA 8. Let o/,V,J, and J, be the same with those in Theorem
8. Then for any fixed 6(>0), [ I(J,, o, a)—L(a', ¥, 4,6)]>0 (1~
+oo).

PROOF. By Theorem 3, the solution p=p(t, p°, ¢°, @/, 2), a=4(¢, D°,
q’,a’,2) of (14) can be continued in D to t=b" if (% ¢°)eI(J,, J,, @').

Now we take any positive number e. Then by Lemma 7, we can
take a function fy(p, q, s)eCH(D°) such that

J

D

_ a3 i_e -3
(H f)—2 ydpdqu) < £ [t (00

Hence if we put g4(p, 9, s)=03/s—(H, f,) on D, then we have by Sch-
wartz inequality

(18) [10p,q,5) dpdads < <.
D
We have in the same way as in (17)
L3600 @, 2, ¢, 2 0", @', 2, 8

(19) o5 . ~
2—3—8 {D(t’ poy qo’ a',r l), Q(tr po’ qoy a/, 2)7 t}

for a’<t<¥ and (p° ¢°)eI(J}, J,, a’). We shall sometimes abbreviate
pt, p° ¢° a’, 2) and §(¢, ° ¢°,a’,2) as p and g in this proof of Lemma
8. By (19) and the definition of g(p, g, s), we get

| S, 2% ¢, 0/, 2,5, 2%, &, o/, 2), )= 3@, ¢, @) |
_ tld~~~ _ z/a§~~ - 4 . |
—If 7 S(D,q.t)dt]—u o (b, a, t)dt‘zlaf’ 9.(b, g, t)dt
v . 5)
+| (#9650t
Hence by the definition of 4(a’, ¥, »°, ¢° 2), we have
124 I'4
@) 4@,b, 00, D= [ 106,50 de+ max | (5,706, 5, 0]

Now for any fixed s(a’<s<¥) and for any fixed A(>0), the one-
to-one mapping of I(J,, J, a’) onto an open set V(s, 1) in I(s)

4) Cf. E. Kamke [1, pp. 149-153].

5) (H,fo)(%,7,t) is the value of the Poisson bracket (H, fo)(p, g, 8) for p=3%, ¢=71,
8=t.
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(@, @")~>{i(s, ', ", @', 2), 4(s, 1°, ¢, @', 2)}
is measure-preserving, since (14) is a Hamiltonian system (Theorem of
Liouville).® Hence

b/
f | 96(b, T, %) | dt)tip“dq"
I(J1,J2,0") o
14

(21) = af < Z; Mml 9:(p, 4,0 | dp"dq")dt

= f b’( f | 96(p, 4, 8) | dpdq)ols

a’ V(s,2)

= f | 94(p, 4, 8) | dpdads,
D

since V(s, )CI(s) and D={(p, g, )| (p, @) I(s), a=s=b}.
On the other hand”

LG 7 0= Lo, 5,0 {3f° (5, 8, O)— (HL)G, 5, 1)
1 afo ~ o~ .~
S (03, )= 2 dtfo(n,q,)
since L f,(5, §, 1) =~ (H, )5, 3, 9+ L5, , 1) for the solution p=F,

g=g of (14) in D as can be easily verified. Hence for o’ <t <b’

[ t)dt} =1 G5 0]
[ a2 5ol

+7 FABE, 2%, &, &, D, 5, 2%, ¢, ', ), £} —Fo(0", @', ') |

Now there is an M’ such that |f,]|,|af,/as| <M’ on D since f,eC;(D").
Therefore we have

v ~ 1
(22) max | [ (H, )G, §, )t | < L (@ —a)+2)0"

SV
By (18), (20), (21) and (22), we get
A(aly bl; por qo’ Z)dpodqo
I(J1,J3,0")

g-z“i +% {0 —a")+2)M 1, [I(J,, T, a’)]§§+§§e if 2=>2{('—a’)+2}

M p,,[I(Jy, J,,a’)]/e. Thus we have proved that
4@, b, p° q°, Ddp°dg" >0 (A—>+ ).

I(Jy,J3,0”)
From this we can easily deduce the desired results. Q.E.D.

6) Cf. E. Kamke [1, pp. 155-161].
7) Cf. footnote 2) and 5).
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8. Now we state and prove a form of the adiabatic theorem.
THEOREM 4. Under Assumptions 1,2 and 3,
ﬂzn[I(JI’ J2v a’)_L(a’v br A 5)]'_)0 (2—)+ °°)
for any fixed J,,J, 6 such that J}>J,>J,>JF and 6>0.

ProoF. We fix any J,,J, such that J}>J,>J,>JF, then by

Lemma 8, if b=p'>a and § is sufficiently close to a,

(23) teu[I(J3, 5y @)—L(a, B/, 2, 0)]>0 (2> + o)

for all >0. We denote by B the least upper bound of 5’ such that
b=p >a and (23) holds for all >0. Also we fix a §,>0 such that
J¥>J,+6,>J,—0,>JF. Then if b=p"'=p>a”">a and p’'—a” is
sufficiently small, we have by Lemma 8

(24) . [I(J1—0dy, I 0y, @) — L(a”, B”, 2, 6/2)] >0 (3> +o0)

for all 6>0. Also by the definition of B, there is an «’ arbitrarily
close to 8 such that f>a’’>a and

(25) [‘Zn[I(JI’ JZ’ a)'—L(a’r a”’ 2’ 5/2)]—’0 (1"> + °°)

for all >0. Hence we can take for any pB” such that b6=8"=p and
B’ —B is sufficiently small or zero, an a” such that f>a”’>a and (24),
(25) are satisfied for all 6>0. We take such a’” and 8” in the follow-
ing.

Now if (p°, ¢%)e L(a, a”, 2,8/2), then the solution p=7(¢, p°, ¢°, a, 4),
q=q(, »°, ¢°, a, 2) of (14) can be continued in D to t=a’”, by the defi-
nition of L(a,a", 4,6/2). We denote by ¥%,, the one-to-one mapping
of L(a,a”, ,4/2) into I(a")

(»° qo)—){ﬁ(a”’ % ¢ a, ), ﬁ(a", % ¢ a, 2)}
and also by R(4,0) the set U, ,[I(J,, J,, a)(NL(a, a”, 4,6/2)]. Then by
the definition of L(a, a”, 2, /2) we have for 0<5<25, 1>0
(26) R(2,0)TI(J,— 8y, J,+6,, a”).
Also the mapping %, is measure-preserving since (14) is a Hamil-
tonian system (Theorem of Liouville).® Hence for 6>0,1>0

(27) tan[ R(2, 0)]= [ 1(J}, T, @) L(a, a”, 2, 6/2)].
By (25) and (27), we have for all §>0
(28) P2 L R(2, 0)] > p12u[ 1 (T}, J 3 @)] (2> 0).

From (28), (24) and (26), we have for 0<§<25,
toal R(2, )L, 8", 3, 3/2)] > ou[ 1T, Ty @)] (>+ o).
Therefore we have for 0<6<24,,

Ll Ui sLR(2, 0) N L(a”, 87, 2, 8/2) 1} > 112 [ L (J, T2y @)] (A—>+c0)
since A,, and so A;; is measure-preserving. Hence we have for
0 <0 <25,

el (2, I3y @) La, B7, 2, 8) 1> 2, [ 1(J}, I3, @)] (2> + o0)
since we can easily see that I(J,,J, a) N L(a, ”,2,6) DU R(A,d)
NL(«", B, 4,6/2)] by the definitions of L(a’,b’, 2,6) and R(a, ).
Thus we get
(29) pZn[I(JI’ I a)_L(a’ 13”) 2, 6)]_)0 (Z—)'I' °°)
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for 0<d<2, and so for all >0, since L(a, B", 2, d;)DL(a, B, 2,6,)
if 9,>0,.

If B<b, then we can take the above B” in such a manner that
b=p">p. But then (29) contradicts the definition of 3. Hence f=b.
Then if we take f”=pf=b in the above argument, we have from (29)
the desired results. Q.E.D.
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