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6. We consider the Hamiltonian system containing a parameter
(>0)
(14) dv/dt----aOH/Oq(v, q, t), dq/dt--aOH/Ov(v, q, t)
in D. If (p,q,t)D and ,>0, here is a unique solution of (14)in
D passing through (po, qO, to,) and prolonged as far as possible to he
both directions of the time t, by the regularity of H(p, q, s) in As-
sumption 1., We denote i by

(15) p=(t, pO, qO, to, ), q=(t, pO, qO, to, ).
For a fixed (po, qO, tO)D and a fix ,2(> 0), (t, pO, qO, to, ,), (t, pO, qO, to,
are defined on a subinterval of he time interval a<t<b which may
be open, dosed or half-open according to (p0, qO, t0, 2)?’

Since O(/Os is continuous on D and D is compact, there is a
number M(>0) such tha

(16) a3/as iM on D.
THEOREM 3. Let a’ and b’ be two numbers such that aa’<b’

<b and (b’--a’)<(J*--Jx*)/(2M) and let us put J.--J*--M(b’--a’),
Jl=J* +M(b’--a’). Then the solution of (14) passing through (pO, qO,
a’) where (pO, qO)e I(J, J., a’) can be prolonged in D to the time interval
a’_tb’ for every 2(>0).

PROOF. Let /3 be the least upper bound of /3’ such that the
solution in D of (14), p=(t, pO, qO, a’, 2), q--(t, po, qO, a’, 2) for a fixed
(p,q)eI(J,J.,a’) and a fixed 2:>0, can be defined for the time
interval a’t<fl’ and such that a’<fl’<b’. Then a’<flb’ and this
solution in D can be defined on the the time interval a’t<fl. Since
OH/Op, OH/Oq are bounded on D by their continuity on the compact set
D, the functions (t, pO, qO, a’, ) (t, pO, qO, a’, ) (i--1,. ., n) of t repre-
senting a solution of (14) in D, are uniformly continuous on the
interval a’_<t<fl. Hence the limits

(t, pO, qO, a’, 2)-->p’(t-->fl--O)
(t, pO, qO, a’, 2)-->q’(t-->fl--O)

exist and (p’, q’,/) e D.
We shall sometimes abbreviate "(t, po, qO, a’, ,) and "(t, po, qO, a’, ,)

1) Cf. E. Kamke [1, pp. 135-136 and pp. 137-142].
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as and in this proof of Theorem 3.
Now for a’<=t<, we have2’

d {(t, pO, qO, a’, .), (t, pO, qO, a’, ,), t}
dt

d {H(, , t), t}
dt

(17) --3 d H-{H(, , t), t}___ (p, t)+ [H(, , t), t}

3 aH-- {g(, , t), t} (, , t)+ {g(, , t), t}

since we can easily verify that
d H(, , t)-- 0H
dt

(’ ’ t)

for the solution (p-, q=) of (14). Hence by (16) we have

q,, a’) ]= t)dt

(, , t)dt <M(--a’)M(b’--a’).

Hence we have

JI =J+M(b’--a’)> (p’, q’, )>J,--M(b’--a’)--J
since j>(pO, qO,a,)>j, by (pO, qO)ei(j, j, a’). Thus we have proved
that (p’, q’, )eD and that the solution p=(t, po, qO, a’, 2), q--(t, po, qO,
a’, 2) of (14) in D can be defined on the interval a’<t. If a’
<b’, then (p’, q’, )eD ’ and the solution can be continued beyond
t=." This contradicts the definition of ft. Hence =b’. This com-
pletes the proof of Theorem 2.

7. When aa’<b’b, (pO, qO)e I(a’) and 2> 0, we define (a’, b’,
pO, qO, 2) as follows. We put

(a’, b’, pO, qO, 2) max {(t, pO, qO, a’, 2), (t, po, q0 a’, ), t}-- (po, qO, a’)
a’t

if the solution p--(t, pO, qO, a’, ), q=(t, po, qO, a’, ) of (14) can be
continued to t=b’ in D and we put

(a’, b’, po, qO, ;)_ +,
if the above solution of (14) can not be continued to t--b’ in D.
When aa’<b’b, 2>O and 5>0, we denote the subset of I(a’),
{(po, qO) (pO, qO)e I(a’), (a’, b’, pO, qO, 2) <5} by L(a’, b’, , ). We can easily

2) @/aE{H(, ", t), t}, aS/@s[H(, , t), t} are the values of OS/gE(E, s), O/as
(E,s) for E=H(, ", t), s=t and egH/cgs(, ,t), vg/cgs(, ’,t) are the values of gH/cgs
(p, q, s), /Os(p, q, s) for p=, q=’, s=t.

3) Cf. footnote 11) of Part II.



No. 7] On the Adiabatic Theorem for the Hamiltonian System. III 379

prove that L(a’, b’, 2, ) is an open set in R2n by the continuity of

} on D and by the theorems, on the dependence of the solutions
of (14) in D on the initial conditions.

In the following, we denote the m-dimensional Lebesgue measure
of a measurable set in R" by /,[

LEMMA 8. Let a’, b’, J1 and J2 be the same with those in Theorem
3. Then for any fixed J(0),/2n[I(J1, J2, a’)--L(a’, b’,

PROOF. By Theorem 3, the solution p--(t, pO, qO, a’, ), q--(t, po,
q0, a’, ) of (14) can be continued in D to t=b’ if (pO, qO)ei(j j, a’).

Now we take any positive number e. Then by Lemma 7, we can
take a function fo(P, q, s) e C(D) such that

(fix,(H,fo)_ 33 dpdqds) < e p2+,(D)j-.
Hence if we put go(P, q, s):3/s--(H,So) on D, then we have by Sch-
wartz iality

f(18) ao(, q, s) dpdqds< g.
D

We have in the same way as in (17)
d {(, o, qO, a’, ) (t, o, qO, a’, ),
dt

(9) 5 ), i(t, o, qO, a’, ),{(t, o, qo, a’,

for a’tb’ and (pO, qO)e I(J, J2, a’). We shall sometimes abbreviate
(t, pO, qO, a’, ) and (t, pO, qO, a’, ) as and in this proof of Lemma
8. By (19) and the definition of go(P, q, s), we get

3{(t’, po, qO, a’, ), (t’, po, qO, a’, ), t’]--3(p, qO,

_] t, d

Hence by he eflniion of J(’, ’, , g, 2), we have

(eo) (’, b’, ", ,) I.(, , t) at+ max

Now for any fixed s(a’sb’) and for any fixed 2(>0), the one-
to-one mapping of I(J, J, a’) onto an open set V(s, 2) in I(s)

4) cf. E. Kamke [1, pp. 149-153].
5) (H, fo)(, , t) is the value of the Poisson bracket (H, fo)(p, q, s) for p=, q--,
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(pO, q0)__>{(s, pO, qO, a’, ), (s, po, qO, a’, 2)}
is measure-preserving, since (14) is a Hamiltonian system (Theorem of
Liouville).e) Hence

f (f’l *’
f (f )o(, , t)apaq at

(21) ,

f(f go(P, q, s) dpdq)ds
V(s,)

f go(P, q, s) dpdqds,
D

since V(s, )I(s) and D--{(p, q, s) (p, q) I(s), asb}.
On the other hand

(H,fo)( t)-- 1 afo (, , t)-- 1 f af( }3s t ’ t)--](H,fo)(, , t)

Ofo(, , t)-- fo(, , t)
2 as 2 dt

dsince fo(P, , t)----(H,fo)(, , t)+(, , t) for the solution

q- of (14) in D as can be easily verified. Hence for a’t’b’
(H,fo)(, , t)dt (, , t)dt

+ 2op, , t) dt
,

foil(t, pO, qO, a’, ), (t’, pO, qO, a’, ) t’}--fo(p, qO, a’)l"
Now there is an M’ such that Ifo I, i3fo/3S IM’ on D since foeC(D).
Therefore we have

() max (H,f,)(, , t)dt =((b’-’)+)’.

By (18), (20), (21) and (22), we get

f (a’, b’, po, qO, )dpOdqO

<e +1 e <eif22{(b’--a’)+2}= {(b’--a’)+2}M’2[I(J,J2, a’)]+ 2
x M’=[I(J, J, a’)J/e. Thus we have proved that

f 3(a’, b’, pO, qO, )dpOdqOO (+).
I(J,Jt,

From this we can easily deduce the desired results. Q.E.D.

6) Cf. E. Kamke [1, pp. 155-161].
7) Cf. footnote 2) and 5).
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8. Now we state and prove a form of the adiabatic theorem.
THEOREM 4. Under Assumptions 1, 2 and 3,

.I(J, J, a)--L(a, b, , )]-0 (-->+
for any fixed J, J., such ha J* >J.>J>J* and > O.

PROOF. We fix any J, J such that J* >J.>J>J*, then by
Lemma 8, if b>’>a and /’ is sufficiently close to a,
(23) .I(J, J., a)--L(a, ’, ,)0 (-A-
for all >0. We denote by / the least upper bound of/’ such that
b>’>a and (23) holds for all >0. Also we fix a 0>0 such that
J* >J+0>J--0>J*. Then if b>">fl>a"> a and fl"--a" is
sufficiently small, we have by Lemma 8
(24) p.[I(J--o, J.A-o, a")--L(a", fl", , /2)J-0 (->+ o)
for all >0. Also by the definition of fl, there is an a" arbitrarily
close to fl such that fl> a"> a and
(25) p.[I(J, J, a)--L(a, a", , e3/2)-0 (]--> A-o)
for all >0. Hence we can take for any fl" such that b>fl">fl and
fl"-fl is sufficiently small or zero, an a" such that fl>a">a and (24),
(25) are satisfied for all >0. We take such a" and fl" in the follow-
ing.

Now if (p0, q0)e L(a, a", , /2), then the solution p--(t, p0, qO, a, ),
q--(t, pO, qO, a, ) of (14) can be continued in D to t--a", by the defi-
nition of L(a, a", , /2). We denote by I, the one-to-one mapping
of L(a, a", 2, /2) into I(a")

(pO, qO).__>{.(a,, pO, qO, a, ), "(a", pO, qO, a, )}
and also by R(,, ) the set ,[I (J, J., a) f-I L(a, a", , /2)3. Then by
the definition of L(a, a", ,, /2) we have for 0<<250,
(26) R(2, )I(J,--o, J.+o, a").
Also the mapping 9/, is measure-preserving since (14) is a Hamil-
tonian system (Theorem of Liouville)2’ Hence for >0, >0

(27) g.=[R(, $)] =g2VI(J, J., a) L(a, a", , /2)_.
By (25) and (27), we have for all $>0

(28) .,ER(, )->=EI(J,, J., a)] (-->A- o).
From (28), (24) and (26), we have for

l=[R(, $)L(a", ", , /2)]--=[I(J1, J., a)] (-->A-
Therefore we have for 0<$<250,

{’I:][-R(, $) L(a", ", , /2)]}p=[I(J, J., a)] (2--> A- o)
since 9/. and so I7, is measure-preserving. Hence we have for
0<<2o,

t,[I(J, J., a) L(a, fl", , $)] -->l.,[I(J,, J., a)J (--> A- o )
since we can easily see that I(J, J2, a) L(a, fl",, )

L(a", ", , /2)] by the definitions of L(a’, b’, , ) and R(,
Thus we get
(29) l.[I(J, J, a)--L(a, ", , )3-0 (-A-)
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for 0 <:8 <:2o and so for all c]:> 0, since L(a, fl",
if 2:>.

If b, then we can take the above f in such a manner that
b". But then (29) contradicts the definition of . Hence --b.
Then if we take ’------b in the above argument, we have from (29)
the desired results. Q.E.D.
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