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3. Let (X, m) be a measure space where m is a finite, separable,
and complete measure1) defined on a Borel field in X. A one-param-
eter group {tl--oo<t<+oo} of one-to-one mappings t of X onto
X is called a flow on (X, m). A measurable function f(P) on (X, m)
is called an invariant function of a flow {} on (X, m) if

f(%t(P))=f(P)
almost everywhere on (X, m) for every fixed t and it is called a
strictly invuriant function of a flow [t} on (X, m) if it is defined
everywhere on X and

f(t(P))=f( P)
for all (P, t) such ha Pz X, o <t< + o. A measure-preserving
and measurable flow’ {,} on (X, m) is ergodie (in he sense of J.v.
Neumann) if and only if all is invarian functions are equivalenta’

to constants on (X, m). If a flow {,} on (X, m)is measure-preserv-
ing and measurable, hen we can associate with i a one-parameter
group {1 I--OO <t<: -OO} of unitary transformations lI, on L2(X, m)
by

(ll,f)(P) f(,(P)) f L2(X, m), PeX
and 1t is continuous as a function of t in the strong topology of ltt.4)

If X is a Lebesgue measurable subset of a Euclidean space R
and m is the usual Lebesgue measure in R defined for all Lebesgue
measurable subsets of X, a flow on (X, m) is simply called a flow on
X in the following and we write simply L(X) for L2(X, m).

4. We consider the Hamiltonian system with a parameter s

( 9 ) dp/dt=--Hl’q(p, q, s) dq/dt--H/p(p, q, s).
By Assumption 1, the solution of (9)

(10) p--19(t, pO, qO, s) q--q(t, pO, qO, s)
in the open set I(s) for a fixed s (a<=s_<b)with the initial conditions
(p,q)__(pO, qO)((pO, qO)is)) at t--O, can be uniquely prolonged for the

1) For the definition of complete or separable measure, ef. P. Halmos [1].
2) For the definition of a measure-preserving, a measurable or an ergodic flow on

(X, m), cf. E. Hopf [2, pp. 8-9 and p. 28].
3) Two measurable functions on (X, m) are called equivalent on (X, m) if they coin-

cide almost everywhere on (X, m).
4) For definitions and results concerning flows on a measure space used in this

paper, ef. E. Hopf [2].
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whole time interval oo <t <: + o and (1 (t, p0, q0, s), q (t, p0, q0, s))
eS(J, s) for --o <:t< +o if (pO, qo)es(j, s), since H(p, q, s) is an
integral of (9), S(J, s)--{(p, q) H(p, q, s)-(J, s), (p, q)e G,} and S(J, s)
is compact for J* :> J> J*, b s :> a. Also (t, p0, q0, s), q(t, p0, q0, s)
e C( o, o) D] i-- 1,-.., n.’ We denote by T’> the one-to-one
mapping of I(s) onto I(s)
(11) (po, qO)___>( (t, pO, qO, s), fl (, pO, qO, s)).
Then {T,<8)[ --oo<t<+o} constitutes a flow Fs on I(s) for asb,
since the right sides of (9) do not contain the time t explicitly.
The flow F, on I(s) is measure-preserving and measurable since (9)
is a Hamiltonian system6’ (Theorem of Liouville)and i(t, pO, qO, s),
q i(t, p0, qO, s) (i--1,--., n) has sufficient regularities.

Since T’ transforms S(J,s) onto S(J, s)Tt" induces a one-to-one
mapping TJ’’ of S(J, s) onto S(J, s). {TJ" oo <:t < + o } constitutes
a flow F., on the measure space (S(J,s), m.,) for J>J>J,bs
__a.

LEMMA 2. The flow F., on (S(J, s),m.,) is measure-preserving
and measurable for J,*

We shall give a proof of this lemma in Part IV of this paper.
Also we consider the one-to-one mapping T of D onto D defined

by
(12) (pO, q0, s)-->(P(t, pO, qO, s), q(t, p0, qO, s), s).
{T [--o <t< +o} constitutes a floW F on D. From the fact that
the flow F, on I(s) is measure-preserving and (t, p0, q0, s), q (t, po, qO,
s) are sufficiently regular, it follows easily that the flow F on D is
measure-preserving and measurable. Then we have

THEOREM 2. For any fied s (b>:s>:a) the two following condi-
tions i) and ii) are equivalent:
i) Every invariant function f(p, q) of the flow F, on I(s) is equiv-
alent on I(s) to a function of the form (H(p, q, s)) where (E) is
a measurable function of E for the interval @(J*, s)> E> (J*, s).
ii) The flow F., on (S(J,s), m,,) is ergodic for almost all J in the
interval J* >J>J*.

We shall give a proof of this theorem in Part IV. This theorem
is not used for the proof of our main theorem (the adiabatic theorem).
It is laid here only to clarify the meaning of the following Assump-
tion 3.

5. Now we put a further
ASSUMPTION 3. The condition i) in Theorem 2 (equivalent to

the condition ii) in Theorem 2) is satisfied at almost all s in the
interval a s b.

5) Cf. E. Kamke [3, pp. 135-136 and pp. 161-164].
6) Cf. E. Kamke [3, pp. 155-161].
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We can easily prove that Assumption 3 is also equivalent to
the following proposition: For almost all s in the interval a s b,
every invariant function f(p, q) of the flow F8 on I(s) is equivalent

on I(s) to a function of the form @((p,q,s)) where @(J) is a
measurable function of J for the interval J*>J>J*.

LEMMA 3. If an invariant function f(p, q, s) of the flow F on
D belongs to L(D), then

f(p, q, s) s)dpdqds--O.)- (P, q,
D

PROOF. We can assume that f(p, q,s) is a strictly invariant
function of the flow F on D since for every invariant function of
the flow F on D, there is a strictly invariant function of the flow F
on D equivalent to it on D.s) Then for almost all s in the interval
b_s_a, f(p, q, s) as a function of (p, q) is an invariant function of the
flow F8 on I(s) and so by Assumption 3 is equivalent on I(s) to a

function of the form ,(3(p, q, s)) where ,(J) is a measurable func-
tion of J on the interval J* >J>J*.

Hence

ffO3dpdqds f’
D (s)

J*

d** 8(d,s)

by Fubini’s Theorem, Lemma 1, and Theorem 1. Q.E.D.
Now we consider the one-parameter group {U} of unitary trans-

formations on L(D) associated with the flow F on D. We define
Af by

(13) Utf f Af
)

0

for all feL(D) for which such Af exists. Then by a theorem of
Stone, A is a self-adjoint operator (in the sense of J.v. Neumann)
on L’(D) and U-eTM in the sense of the operator calculus.) We
denote the domain and the range of A by .(A)and by IR(A)respect-
ively. For a function f e C(D), we define f=0 on D--D) for

7) Here the bar means the complex conjugate.
8) Cf. E. Hopf [2, pp. 27-28].
9) II lID means the norm in L2(D).

10) Cf. F. Riesz and B. Sz.-Nagy [4, pp. 383-385].

11) If we denote for each s the set (p, q, s)](p, q)e I(s)} by I(s), then D-D=I(a)
U I(b) since D is relatively open in K.
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convenience sake in the following. Then C(D)CL2(D) and also C(D)
CI(D). By calculating explicitly the Af in (13) for feC(D), we
have easily

LEMMA 4. If f C(D), then f (A) and
Af----i(f, H)--i(H, f).12,

Now we prove a lemma which is useful for some applications
of Stone’s Theorem.

LEMMA 5. Let L be a self-adjoint operator on an abstract com-
plex Hilbert space . Let {V I-- oo < t< + o} be the strongly continu-
ous one-parameter group of unitary transformations V--eLt on
We put 9-- {f fe (L), Lf--O}. Then . is a closed linear subspace

of . We denote by 9+/- the orthogonal complement of in . Let
be a linear (not necessarily closed) subspace of , invariant for the

group V,, that is, such that, V()-- for all t. Also let )(L)
and -. Then we have L()--x.)

PROOF. 9(L)---- since L is self-adjoint in Yg. Hence L()+/-.
Also L()is a closed linear subspace of Y9. Let us assume that
L()=+/-. Then there exists an element fe.x such that f0 and
(f, Lg)--O for all ge. Now we have for all ge and for all t

d (f, Vtg)-- lim (f, Y,t(Ytg)-- gtg)_(f, inytg)
dt o,

since Vg.(L)m by g, V()-- and (L). From this,
we have for all g and for all t

d--(f, Vg)--O
dt

since (f, iLVg)--O by the assumed properties of f and
Therefore for each ge, (f, Vg) and so (Vf,g)(--(f, V_g))

are constants for -- <:t<T so that (Vtf--f, g)--(Vf--Vof, g)--O
for all ge!D and for all t. Hence Vtf--f for all t since
From this, it follows easily that fe)(L) and Lf--Om so that
Hence f--0 since also fe +/- by the assumption. This contradicts
the assumption that f4=0. Q.E.D.

We return to the discussion of the group {U} of unitary trans-
formations associated with the flow F. We denote by N the set of
all invariant functions of the flow F on D belonging to L2(D). N
coincides with the set [f f L2(D), f Utf oo <t <: Jr- oo }-- [f f
)(A), Af--O}.15) Hence N is a closed linear subspace of L2(D). Also

12) If f, ge C’(D), we denote by (f, g) the Poisson bracket -- ( Of ag ag 3f .)
13) )(L) and 9(L) are the domain of definition and range of L respectively. L()

and Vt() are the images of by L and V respectively.
14) Cf. F. Riesz and B. Sz.-Nagy [4, pp. 383-385J.
15) The last identy follows easily from the spectral representations of {Ut} and A.

Cf. F. Riesz and B. Sz.-Nagy [4, pp. 383-385J.
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we denote the orthogonal complement of N in L(D) by N+/-. Then
we have

LEMMA 6. A[C(D), the image of Co(D) by A, is contained
and is dense in N+/-.

PROOF. C(D) is dense in L(D) as is well known. Also by
Lemma 4 we have C(D)(A). Further we have U(C(D))-C
(D) for all t(--o <t< +o) since i(t, p0, q0, s) and q i(t, p0, qO, s)(i--1,

-, n) all belong to C[( o, +o)D] and Tt(D):D for all t.
Therefore we get the desired result by Lemma 5.

Now we prove the most important lemma of this Part II.
LEIIA 7. For any e>0, there is a function fo(p,q,s)eCo(D)

such that

(H,fo)--s D

PROOF. By Lemma 3, we have 3/3seN+/-, if a/as is considered
as an element of L(D). Hence by Lemma 6, for any e>0, we have
a function fe C2(D) such that

Afg---s D

Therefore if we put fo--ifd, we get the desired result, since we have
Afo--i(H,fo)

for foeCo(D), by Lemma 4. Q.E.D.
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