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As is well known, the proof of the unique factorization theorem
in regular local rings of dimension d is trivial for d--l, 2. The case
d_4 was reduced to the case d--3 by Zariski-Nagata 2], and the
case d--3 was proved by Auslander-Buchsbaum [1. The proofs in
[1], 2_ depend on homological method. The author gave an ideal-
theoretic proof of. the result of 2] in [3. The purpose of the
present paper is to show that also the result of [1] can be proved
in an elementary way, without referring to any general theory of
homological algebra, along the same idea as in 3.*)

For the convenience of proof, we shall state here the following
well-known propositions without any proof.

Propositio 1. Let F be a finite free module over a Noetherian
ring, then every submodule of F has a finite base.

Proposition 2. Let M be a finite module over a local ring Q.
Let M0 be a submodule of M, and a proper ideal of Q. If MMo
+aM, then M--Mo.

We first prove the following lemmas.
Lemma 1. Let q be a primary ideal belonging to the maximal

ideal m-Qu+Qv of a regular local ring Q of dimension 2. If q
includes u, then there exists an element b of q such that q-QbWQu.

Proof. Since the residue ring Q-Q/Qu is a one-dimensional

regular local ring, it follows that -q/Qu is a principal ideal of Q,
whence follows the conclusion.

Lemma 2. Let q be a primary ideal belonging to the maximal
ideal m of a regular local ring Q of dimension 2, and let {al, a2,---,

an} be its minimal base. Let X1, X2,..., Xn be indeterminates, and
F=QXq-QX2+.." q-QXn a free module over Q. Let 0-->R--rFq-0
be an exact sequence, where induces the mapping o(X)=a; i--l,
2,..., n. Then R is a free module over Q.

Proof. It is evident that there exists an element u of a minimal
base of m such that a,a.,...,anQu. Let a-Qa.q-Qas+.. "q-Qan,
a.-Qa+Qa,+. -t-Qan, ", an_.=Qa_-I-Qan, an_-Qan, then alq-qu,

,7 Recently Nagata proved syzygy theory of local rings without using homologi-
cal algebra. His book including the theory is in press.
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a.qu,..., ,_.Wqu, ,_Wqu are m-primary ideals. From Lemma 1,
it follows that there exist b, b., b,-.-, b_ satisfying:

+qu a=Qb+Qu
+qu a. Qb.TQu

,_-}-qu a,_-Qb,_,-+-Qu.
Adding to b some quantity which belongs to Qu if necessary, we
can assume that those b, b., b,-.., b_ satisfy the following equations:

ucaTuc.a. ba- Tc,_a,_ Tc,a,--O

then it is clear that these a, a,---, a_ belong to R.
We shall prove that {a, a.,-.-, a._} is a free basis of R.

In fact, it is obvious from the definition that
RQaTR (QuXTQX.T TQX,,_

R (VuX+QX+... -QX,,).._.Qa TR (QuX+QuXTQX-{-

R (QuXTQuX.+QuX+... TQX,)

Moreover, it is clear that

Hence we have Ral-ka.--.--a_l-uR.
From Proposition 2, it follows that R--aTa.-.-.-a_.

In order to prove that {a, as,..-, a_} is free, we shall consider
the following equation:

xax.a. +x,,_a,,_--O x. Q.
Comparing the coefficients of X, we have xeQu. Using this result
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and comparing the coefficients of X2, we have 2eQu, and so on.
Thus we have x--yu i-- 1, 2,. ., n-- 1. Therefore we have

ya--y2a22t -t-y_.a_l--O yQ.
Repeating this procedure, we have yeQu, eQu2, and so on.

Therefore we see easily that e Qu-O. Hence R is a free module.
k=l

Lemma 3. Let be any ideal (m-primary or not) of a regular
local ring Q of dimension 2. Then the same result as Lemma 2 holds.

Proof. It is enough to prove the lemma when the rank of
is one. The regular local ring Q of dimension 2 is a unique fac-
torization ring. Since we assumed that is of rank 1, it follows
that there exists the greatest common measure c of a, a2,...,a, where
{a, a2,-", a} is a minimal base of . Therefore we have --qc, where
q-QbQb2...-Qb; a:bc. It is clear that this q is an m-primary
ideal or Q itself. (When is principal, q is Q itself.) The rest of
proof follows from the above Lemma 2.

Lemma 4. Let Q be a regular local ring of dimension 3, and
m its maximal ideal. Let be an ideal of Q such that :m:.
(Clearly the rank of is one or two at most.) Let {a, a2,..-, a}
be a minimal base of . Let X, X2,..., X be indeterminates, and
F:QXWQX2-...+QX a free module over Q. Let O-->R-->F-->-O
be an exact sequence, where induces the mapping (X)--a. Then
R is a free module over Q.

Proof. If n-1, then the lemma is trivial. Now we shall assume
that n_2. Let u be an element of a minimal base of the maximal
ideal m of Q such that ’u:. Let @ be a natural homomorphism
of Q onto Q-Q/Qu, and let :(a). Then {, 2,’", } is a minimal

base of -(). Let Y, Y2,"’, Y be indeterminates, and F=QY
-QY2-t-’" "+QY be a free module over Q. Let O-->R-->F-d-->O be
an exact sequence, where induces (Y):. From Lemma 3, it

follows that R has a free basis. Let {, a2, ,_} be the free basis

of R. It is clear that we can extend naturally the homomorphism

: Q->Q to the homomorphism of the Q-module F onto the Q-module

F, i.e. @(XcX,)--_@(c)Y.
From the definition of the submodule R and R of F and F, it

follows evidently that ,(R)R. We first show that @(R)--R. In
fact, if :Y-2Y2-...-Y belongs to R, i.e. 22--.-
-:0, then there exists an element of F such that --cX
-c2X2-...-cX, where (c):. Obviously we have ,()=. Since
@(ca+c2a2W...-ca):O, it follows that ca-t-c2a2-...-caeQu
:u, Therefore there exist elements d, d2,...,d such that
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-{- udl) al -{- (c-ud.) a.- + cn+udn) a, O. Let a (c-ud)X+( c.
-ud2)X+...-{-(cn-{-udn)Xn, then obviously aeR and @(a)-(fl)-.
Thus we conclude that the mapping of R into R is surjective.

Let {, ,---, ,_} be a free basis of R, and let {a, a.,- -, a_}
be a set of elements of R such that @(a)--. We first show that

those a, a.,.. -, an_l generate R. Since (R)-R-QQ.T... -Q
n_, we have @(R)--(Qal-{-Qa.-{-’" %Qan_), therefore RQaWQa.- -{-Qa,_ -R uF---- Qal -Qa2-[- -Qa,_ -uR. From Proposition
2, it follows that R-Qa-{-Qa-Ju... %Qa,_. Now we shall show that
{a, a.,-.., a_} is a free basis of R. For the purpose, we shall con-
sider the equation: xa+xa.-{-... +x_a_--O; xeQ. Since {, ,- .,
,_} is a free basis of R--(R), it follows that 1--.--""-5_--0.
Hence we have xeQu. Let x--yu; yeQ, then we have yaya.
+--- +y_a,_ 0. By the same procedure, we conclude that ye Qu,
i.e. xQu. Repeating this procedure, we can easily see that xe
Qu-O. Therefore {a, a.,---, a,_} is a free basis of R. Thus the
k=l

lemma is proved.
From Lemma 4, the following theorem follows immediately. (See

El].)
Theorem (Auslander-Buchsbaum). A regular local ring of dimen-

sion 3 is a unique factorization ring.

References

[1] A. Auslander and D. A. Buchsbaum: Unique factorization in regular local rings,
Proc. Nat. Acad. Sci., U.S.A., 4, 733-734 (1959).

[2J M. Nagata: A general theory of algebraic geometry over Dedekind domains, II,
Amer. J. Math., 80, 382-420 (1958).

[3J M. Narita: On the unique factorization theorem in regular local rings, Proc.
Japan Acad., 3, 329-331 (1959).


