# 81. On the Bend of Continuous Plane Curves 

By Kanesiroo Iseki<br>Department of Mathematics, Ochanomizu University, Tokyo<br>(Comm. by Z. Suetuna, m.J.A., July 12, 1961)

In the theory of functions of a real variable there is a beautiful theorem of importance due to S. Banach (cf. Saks [2], p. 280):

Theorem of Banach. Let $F(x)$ be a continuous real function on a linear closed interval $I$ and let $s(y)$ denote for each real number $y$ the (finite or infinite) number of the points of $I$ at which $F$ assumes the value $y$. Then the function $s(y)$ is B-measurable and its integral over the real line coincides with $\mathrm{W}(F ; I)$, i.e. the absolute variation of $F$ over $I$.

The condition that $I$ is a closed interval is not essential for the validity of the assertion. With slight modifications in the proof we have the same result even when $I$ is an arbitrary interval of real numbers; only we then interpret $\mathrm{W}(F ; I)$ as the weak variation of $F$ over $I$ (defind on p. 221 of Saks [2]).

We established in our paper [1] certain basic properties of a geometric quantity called curve bend. It is the object of the present note to obtain an analogue of the Banach theorem for the bend of a plane curve determined by an equation of the form $y=F(x)$, where again continuity is the sole condition that we impose upon the function $F$. Though our theorem is similar to that of Banach in enunciation, the proof turns out far more complicated in our case. We presuppose complete knowledge of [1] on the part of the reader. The precise statement of our theorem reads as follows:

Theorem. Let us define $p(\theta)=\langle\cos \theta, \sin \theta\rangle$ for the points $\theta$ of the interval $K=[-\pi / 2, \pi / 2]$. Given on a linear interval $I_{0}$ (of any type) a continuous real function $F(x)$, let $f(\theta)$ denote for each $\theta \in K$ the number (finite or infinite) of the points of $I_{0}$ at which the unitvector $p(\theta)$ is a derived direction (see [1]§42) for the curve $\varphi$ defined on $I_{0}$ by $\varphi(x)=\langle x, F(x)\rangle$. Then $f(\theta)$ is a $B$-measurable function on $K$ and its integral over $K$ coincides with $\Omega(\varphi)$, i.e. the bend of $\varphi$.

All the notations of this theorem will be retained throughout the rest of the present note. Since the function $p(\theta)$ is continuous and biunique, so is also its inverse function $p^{-1}$, which maps the semicircle $p[K]$ onto the interval $K$. It is immediately seen further that if $\theta_{1}$ and $\theta_{2}$ are any pair of points of $K$, then the angle $p\left(\theta_{1}\right) \diamond p\left(\theta_{2}\right)$ is equal to $\left|\theta_{1}-\theta_{2}\right|$ (see [1] §21).

This being so, let us begin by proving the following analogue of
the Banach theorem for curve length.
Lemma 1. Suppose that $\psi(t)$ is a continuous curve defined on a linear interval $J_{0}$ and situated in the semicircle $p[K]$. For each point $\theta$ of $K$, let $g(\theta)$ denote the number of the points of $J_{0}$ at which $\psi$ assumes the value $p(\theta)$. Then $g(\theta)$ is a B-measurable function on $K$ and its integral over $K$ coincides with $\Lambda(\psi)$, i.e. the spheric length of $\psi$.

Remark. Since $\psi$ is continuous, $\Lambda(\psi)$ is equal to the ordinary length of $\psi$ on account of [1]§76. For our purpose, however, it is more convenient to consider $\Lambda(\psi)$.

Proof. For each point $t$ of $J_{0}$ let $G(t)$ stand for the inverse image of the point $\psi(t)$ under the mapping $p$. Then $G$ is a continuous function on $J_{0}$ with values belonging to $K$, and we find at once that $\mathrm{W}\left(G ; J_{0}\right)=\Lambda\left(\psi ; J_{0}\right)$. Furthermore it is obvious that $g(\theta)$ coincides for each $\theta \in K$ with the number of the points of $J_{0}$ at which the function $G$ assumes the value $\theta$. The assertion follows now at once from the theorem of Banach.

Definitions. Let $T(x)$ be a real-valued function on $I_{0}$ and let $c$ be any point of $I_{0}$. (As we have alreadys observed, every notation of our theorem will keep its meaning in the course of our argument, so that $I_{0}$ always denotes a linear interval of any type.) An infinite sequence $J_{1}, J_{2}, \cdots$ of closed intervals will as usual be termed to tend to $c$ iff (i.e. if and only if) every $J_{n}$ contains $c$ and further $\left|J_{n}\right| \rightarrow 0$ as $n \rightarrow+\infty$. Now let $\xi$ be an extended real number, i.e. a real number or $\pm \infty$. We shall say that $\xi$ is a derived number of the function $T$ at the point $c$ iff there exists in $I_{0}$ an infinite sequence $J_{1}, J_{2}, \cdots$ of closed intervals tending to $c$ and such that $T\left(J_{n}\right) /\left|J_{n}\right| \rightarrow \xi$ as $n \rightarrow+\infty$. It is evident that this is the case when and only when $p\left(\mathrm{Tan}^{-1} \xi\right)$ is a derived direction at $c$ of the curve $\tau$ defined for $x \in I_{0}$ by $\tau(x)=\langle x$, $T(x)\rangle$. (The symbol $\mathrm{Tan}^{-1}$ denotes the principal value of the inverse tangent belonging to the interval $K=[-\pi / 2, \pi / 2]$, where and subsequently we understand $+\infty$ by $\tan (\pi / 2)$ and $-\infty$ by $\tan (-\pi / 2)$ ). Finally, given a triple $\xi_{0}, \xi_{1}, \xi_{2}$ of extended real numbers, $\xi_{0}$ will be termed to lie between $\xi_{1}$ and $\xi_{2}$ iff we have one or both of the relations $\xi_{1} \leqq \xi_{0} \leqq \xi_{2}$ and $\xi_{1} \geqq \xi_{0} \geqq \xi_{2}$.

Lemma 2. Let $c$ be an interior point of the interval $I_{0}$ and suppose that the function $F$ of the theorem possesses at $c$ unilateral derivatives on the right and left, denoted by $\alpha$ and $\beta$ respectively. In order that an extended real number $\xi$ be then a derived number of $F$ at $c$ it is necessary and sufficient that $\xi$ should lie between $\alpha$ and $\beta$.

Proof. We shall confine ourselves to the case $\alpha<\beta$. Consider in $I_{0}$ an arbitrary pair of closed intervals $P$ and $Q$ of which $c$ is
the right-hand and the left-hand extremity respectively. If these intervals are sufficiently short, then $F(P) /|P|>F(Q) /|Q|$ and so

$$
F(P) /|P|>F(P \smile Q) /|P \smile Q|>F(Q) /|Q|
$$

The necessity of the condition is an immediate consequence of this.
Consider next a fixed value $\xi_{0}$ such that $\alpha<\xi_{0}<\beta$. We proceed to associate with each natural number $n$ a closed interval $\left[a_{n}, b_{n}\right] \subset I_{0}$ and a real number $\lambda_{n}$ so as to fulfil the following two requirements: (i) $a_{n}<c<b_{n}$ and $b_{n}-a_{n}<n^{-1}$; (ii) if we write $H_{n}(x)=F(x)-\xi_{0} x-\lambda_{n}$ for every point $x$ of $I_{0}$, then $H_{n}\left(a_{n}\right)<0, H_{n}\left(b_{n}\right)<0$, and $H_{n}(c)>0$. For this purpose we need only choose firstly $\left[a_{n}, b_{n}\right] \subset I_{0}$ sufficiently short in order to secure condition (i) and to fulfil further the two inequalities $F(c)-F\left(a_{n}\right)>\xi_{0}\left(c-a_{n}\right)$ and $F\left(b_{n}\right)-F(c)<\xi_{0}\left(b_{n}-c\right)$.
Indeed $F(c)-\xi_{0} c$ then exceeds $A=\max \left[F\left(a_{n}\right)-\xi_{0} a_{n}, F\left(b_{n}\right)-\xi_{0} b_{n}\right]$, and so there exists a $\lambda_{n}$ such that $F(c)-\xi_{0} c>\lambda_{n}>A$. But the last relation is plainly equivalent to condition (ii).

On account of the intermediate value theorem there then exist two points $u_{n}$ and $v_{n}$ such that $a_{n}<u_{n}<c<v_{n}<b_{n}$ and $H_{n}\left(u_{n}\right)=H_{n}\left(v_{n}\right)=0$. If we now write for brevity $J_{n}=\left[u_{n}, v_{n}\right]$, then $J_{1}, J_{2}, \cdots$ constitute a sequence of closed intervals lying in $I_{0}$ and tending to the point $c$, and we have $F\left(J_{n}\right) /\left|J_{n}\right|=\xi_{0}$ for every $n$. This shows that $\xi_{0}$ is a derived number of $F$ at $c$. As, moreover, both $\alpha$ and $\beta$ are obviously derived numbers of $F$ at $c$, we conclude that the condition of our lemma is sufficient.

Lemma 3. Given in $I_{0}$ a triple of points $a<c<b$ and given $a$ pair of real coefficients $A$ and $B$, let us write $H(x)=F(x)-A x-B$ for each point $x$ of $I_{0}$. If $H(a) \leqq 0, H(b) \leqq 0$, and $H(c) \geqq 0$, then the open interval $(a, b)$ contains a point at which $A$ is a derived number for the function $F$.

Proof. 1) Consider first the case $H(c)>0$. We may suppose $H(a)=H(b)=0$. For, if $H(a)<0$ for instance, there is by the intermediate value theorem a point $a^{\prime}$ fulfilling both $a<a^{\prime}<c$ and $H\left(a^{\prime}\right)=0$, and we need only replace the point $a$ by $a^{\prime}$. Now the function $H$ attains its maximum on $[a, b]$ at some point $c^{\prime}$ of $[a, b]$, where we must have $a<c^{\prime}<b$ since the assumption $H(c)>0$ implies $H\left(c^{\prime}\right)>0$. It clearly suffices to show that zero is a derived number of $H$ at this point $c^{\prime}$. For this purpose we may assume $c^{\prime}$ to be a point of strict maximum for $H$, and the result then holds by the intermediate value theorem.
2) It remains to deal with the case $H(c)=0$. By what has just been proved in part 1) we may suppose $H(x)$ nonpositive everywhere in the interval $[a, b]$. Then $H$ attains at the point $c$ its maximum on [ $a, b$ ], and the assertion easily follows by arguing as at the end of part 1 ).

Lemma 4. Given in $I_{0}$ a triple of points $a<c<b$, let us write $P=[a, c]$ and $Q=[c, b]$. Then each real number $\xi$ which lies between the two quotients $F(P) /|P|$ and $F(Q) /|Q|$ is a derived number of $F$ at some point of the open interval $(a, b)$.

Proof. We may suppose $F(P) /|P| \geqq \xi \geqq F(Q) /|Q|$ without loss of generality. Write $B=F(c)-\xi c$ and define $H(x)=F(x)-\xi x-B$ for each point $x \in I_{0}$. Then $H(c)=0$ and further $H(a)=|P| \xi-F(P) \leqq 0$, $H(b)=F(Q)-|Q| \xi \leqq 0$. Lemma 3 shows now at once the truth of the assertion.

Lemma 5. For each subset $E$ of $I_{0}$ let $M(E)$ denote the set of the points $\theta$ of $K$ such that $p(\theta)$ is a derived direction of the curve $\varphi$ at some point of $E$, or equivalently, such that $\tan \theta$ is a derived number of the function $F$ at some point of $E$. Then the set $M(E)$ is convex whenever $E$ is a one-point set or an open interval.

Remark. As is almost evident, a nonvoid set of real numbers is convex iff it is either a one-point set or an interval. We shall retain the symbol $M(E)$ throughout the rest of this note.

Proof. We have to ascertain that every closed interval [ $\theta_{1}, \theta_{2}$ ] with extremities belonging to $M(E)$ is necessarily contained in $M(E)$. Suppose $\theta_{1}<\theta_{0}<\theta_{2}$ for this purpose and write $\xi_{i}=\tan \theta_{i}(i=0,1,2)$ for short, so that $\xi_{1}<\xi_{0}<\xi_{2}$.

1) Consider first the case where $E$ consists of a single point $c$. Since both $\xi_{1}$ and $\xi_{2}$ are derived numbers of $F$ at $c$, there exists in $I_{0}$, for each positive number $\varepsilon$, a pair of closed intervals $P_{i}=\left[a_{i}, b_{i}\right]$ ( $i=1,2$ ) which contain the point $c$, have lengths $<\varepsilon$, and fulfil the relation $F\left(P_{1}\right) /\left|P_{1}\right|<\xi_{0}<F\left(P_{2}\right) /\left|P_{2}\right|$. We now attach to each point $t$ of $[0,1]$ a closed interval $J_{t}=\left[a_{1}(1-t)+a_{2} t, b_{1}(1-t)+b_{2} t\right]$, so that $c \in J_{t} \subset I_{0}$ and $\left|J_{t}\right|=\left|P_{1}\right|(1-t)+\left|P_{2}\right| t<\varepsilon$. Then the function $\xi$ defined by $\xi(t)=F\left(J_{t}\right) /\left|J_{t}\right|$ for $t \in[0,1]$ is continuous and we clearly have $\xi(i-1)$ $=F\left(P_{i}\right) /\left|P_{i}\right|$ for both $i=1$ and 2. Consequently there is in ( 0,1 ) a point $t_{0}$ for which $\xi\left(t_{0}\right)=\xi_{0}$. Since $\varepsilon$ is arbitrary, it follows that $\xi_{0}$ is a derived number of $F$ at $c$, or equivalently, that $\theta_{0} \in M(E)$. This completes the proof for $E=\{c\}$.
2) We pass on to the case where $E$ is an open interval. By definition of $M(E)$ there is in $E$ a distinct pair of points $c_{1}$ and $c_{2}$ such that $\xi_{i}$ is a derived number of $F$ at $c_{i}$ for $i=1,2$. We then can choose in $E$ a disjoint pair of closed intervals $I_{1}$ and $I_{2}$ containing the points $c_{1}$ and $c_{2}$ respectively and satisfying $F\left(I_{1}\right) /\left|I_{1}\right|<\xi_{0}$ $<F\left(I_{2}\right) /\left|I_{2}\right|$. Let $I_{8}$ be the closed interval that abuts both $I_{1}$ and $I_{2}$, so that $\xi_{0}$ lies either between $F\left(I_{1}\right) /\left|I_{1}\right|$ and $F\left(I_{3}\right) /\left|I_{3}\right|$ or between $F\left(I_{2}\right) /\left|I_{2}\right|$ and $F\left(I_{3}\right) /\left|I_{3}\right|$. It follows from Lemma 4 that $\xi_{0}$ is a derived number of $F$ at some point of $E$, or what amounts to the same thing, that $\theta_{0} \in M(E)$, Q.E.D.

Lemma 6. The function $f(\theta)$ is $B$-measurable and $\Omega(\varphi)$ does not exceed twice the integral of $f(\theta)$ over $K$.

Proof. Given any natural number $n$, let us decompose the interval $I_{0}$ into a disjoint sequence $\Delta_{n}$ (finite or infinite) each of whose elements $J$ is either a one-point set or an open interval with length smaller than $n^{-1}$. Let further $S_{E}(\theta)$ denote for each subset $E$ of $I_{0}$ the characteristic function of the set $M(E)$. Since $S_{J}(\theta)$ is a Bmeasurable function of $\theta$ for every element $J$ of $\Delta_{n}$ by Lemma 5 , so must also be the sum of $S_{J}(\theta)$ for all $J$. On the other hand, writing $f_{n}(\theta)$ for this sum, we easily verify that $f_{n}(\theta) \rightarrow f(\theta)$ at each point $\theta$ of the interval $K$ as $n \rightarrow+\infty$. This proves $f(\theta)$ to be a Bmeasurable function on $K$.

Let us now insert in $I_{0}$ an arbitrary sequence $x_{0}<x_{1}<\cdots<x_{n+1}$ of $n+2$ points, $n$ being any natural number. To shorten our notations we put $Q_{i}=\left[x_{i-1}, x_{i}\right]$ and $R_{j}=\left(x_{j-1}, x_{j+1}\right)$, where and below the index $i$ ranges over $1, \cdots, n+1$ and $j$ over $1, \cdots, n$. Then every $M\left(R_{j}\right)$ is a convex set on account of Lemma 5 . The function $S_{E}(\theta)$ defined above will conveniently be written $S(\theta ; E)$ in what follows. Noting that then $S\left(\theta ; R_{1}\right)+\cdots+S\left(\theta ; R_{n}\right) \leqq 2 f(\theta)$ for every $\theta \in K$ as is easily seen, we deduce at once, with the help of Lemma 4, that

$$
\sum_{j}\left[\varphi\left(Q_{j}\right) \diamond \varphi\left(Q_{j+1}\right)\right] \leqq \sum_{j}\left|M\left(R_{j}\right)\right|=\int_{K}\left[\sum_{j} S\left(\theta ; R_{j}\right)\right] d \theta \leqq 2 \int_{K} f(\theta) d \theta
$$

This implies the inequality of the assertion, since $\Omega(\varphi)$ is the supremum of the leftmost sum in the above relation for all choices of the sequence $x_{0}, \cdots, x_{n+1}$.

Proof of the theorem. On account of Lemma 6 we may assume $\Omega(\varphi)$ finite. For any interval $I \subset I_{0}$ endless on the right [or on the left] (see [1]§72), the restriction of the curve $\varphi$ to $I$ must be $\mathrm{C}^{R}$ on $I$ [or $\mathrm{C}^{L}$ on $I$ ] in virtue of [1] $\S 80$. It thus follows easily, in view of $[1] \S 32$, that we need only consider the case where the interval $I_{0}$ is endless and where therefore $\varphi$ is $\mathrm{C}^{R L}$ on $I_{0}$. We then have $\Omega(\varphi)=\Lambda\left(\varphi^{R}\right)$ by the theorem of [1]§96. Consequently our theorem will be established if we show $\Lambda\left(\varphi^{R}\right)=A$, where and subsequently $A$ denotes for brevity the integral of $f(\theta)$ over $K$.

Now we find by [1] $\S 83$ that the curve $\varphi^{R}$ is right-hand continuous and that $\varphi^{R}(x-)=\varphi^{L}(x)$ everywhere in $I_{0}$. Hence the equality $\varphi^{R}(x)=\varphi^{L}(x)$ is equivalent for each $x \in I_{0}$ to continuity of $\varphi^{R}$ at $x$. It follows from the proof of [1] $\$ 78$ that, at each point $u$ of continuity of $\varphi^{R}$, the curve $\varphi$ has a tangent direction $\hat{\varphi}(u)$ equal to $\varphi^{R}(u)=\varphi^{L}(u)$, so that $\hat{\varphi}(u)$ is a unique derived direction of $\varphi$ at $u$. If, therefore, $\varphi^{R}$ is a continuous curve in particular, the relation $\Lambda\left(\varphi^{R}\right)=A$ is a direct consequence of Lemma 1.

Let us pass on to the case in which the set $N$ of the points of
discontinuity for $\varphi^{R}$ is nonvoid. Since $N$ is countable on account of rectifiability of $\varphi^{R}$, there exists by [1] §94 a continuous non-decreasing function $W(t)$, defined on an endless interval $J_{0}$ and mapping $J_{0}$ onto $I_{0}$, and such that the inverse image $W^{-1}(x)$ of a point $x$ of $I_{0}$ is a non-degenerate set, and hence a closed interval, when and only when $x \in N$. Such an interval will as usual be called interval of constancy (of the function $W$ ). We proceed to construct a continuous mapping $\psi(t)$ of $J_{0}$ into the semicircle $p[K]$ as follows. Writing $t^{*}=W(t)$ for short for any point $t$ of $I_{0}$, we distinguish two cases according as $t^{*} \in N$ or not. In the latter case we put simply $\psi(t)=\varphi^{R}\left(t^{*}\right)$. In the former case, on the other hand, write $[a, b]$ for the interval of constancy that contains the point $t$, and let $\theta_{1}$ and $\theta_{2}$ denote the inverse images, under the mapping $p$, of the distinct points $\varphi^{L}\left(t^{*}\right)$ and $\varphi^{R}\left(t^{*}\right)$ respectively. Let us then set $\psi(t)=p\left(\theta_{1}+\left(\theta_{2}-\theta_{1}\right) \lambda\right)$, where $\lambda$ is determined by the equation $t=a+(b-a) \lambda$.

Thus defined on $J_{0}$ the spheric curve $\psi$ is easily seen to be continuous. Further, $\psi$ is biunique on each interval $J$ of constancy of $W$ and fulfils $\Lambda(\psi ; J)=\varphi^{L}\left(t^{*}\right) \diamond \varphi^{R}\left(t^{*}\right)$ for any point $t$ of $J$. In view of the last relation we find without difficulty that $\Lambda\left(\varphi^{R}\right)=\Lambda(\psi)$. Our task thus reduces itself to proving $\Lambda(\psi)=A$. Now let $g(\theta)$ denote for $\theta \in K$ the number of the points of $J_{0}$ at which $\psi$ assumes the value $p(\theta)$. Then $\Lambda(\psi)$ equals the integral of $g(\theta)$ over $K$ in virtue of Lemma 1. The proof will therefore be complete if we verify that $g(\theta)=f(\theta)$ identically. But this is an easy consequence of Lemma 2 by what we have stated in the above about the curve $\psi$.

## References

[1] Ka. Iseki: On certain properties of parametric curves, Jour. Math. Soc. Japan, 12, 129-173 (1960).
[2] S. Saks: Theory of the Integral, Warszawa-Lwów (1937).

