47. Algebraic Equaton, whose Roots lie in a Unit Circle or in a Half-plane.

By Masatsugu TsuJt.

Mathematical Institute, Tokyo University.

(Comm. by S. Kakeya, M.I.A., May 12, 1945.)
I. Algebraic equations, whose roots lie in a unit circle.

1. In this paper \bar{a} means the conjugate complex of a. Let

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, f^{*}(x)=x^{\bar{n}} f\left(\frac{1}{x}\right)=\overline{a_{n}}+\overline{a_{n-1}} x+\ldots+\overline{a_{0}} x^{n}
$$

$$
A=\left(\begin{array}{l}
a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} \tag{1}\\
0, a_{0}, a_{1}, \ldots, a_{n-0} \\
0,0, a_{0}, \ldots, a_{n-3} \\
\ldots \ldots \ldots \ldots \\
0,0,0, \ldots, a^{n}
\end{array}\right), \quad \overline{A^{\prime}}=\left(\begin{array}{llll}
\overline{a_{0}}, & \mathbf{0}, & 0, & \ldots, 0 \\
\overline{a_{1}}, & \bar{a}, & 0, & \ldots, 0 \\
\overline{a_{2}}, & \overline{a_{i}}, & \overline{a_{0}}, & \ldots, 0 \\
\ldots \ldots \ldots \ldots . & \\
\overline{a_{n-1}}, \overline{a_{n-2}}, \overline{a_{n-3}}, \ldots, \overline{a_{0}}
\end{array}\right),
$$

$$
\mathfrak{F}=\bar{B}^{\prime} B-\bar{A}^{\prime} A=\left(\gamma_{i k}\right),|\mathscr{H}|=\operatorname{det} .\left(\gamma_{k k}\right),
$$

$$
\begin{equation*}
\mathcal{F}(x)=\sum_{0}^{n-1} \gamma_{i k} x_{i} \bar{x}_{k},\left(\gamma_{k i}=\bar{\gamma}_{i k}\right) \tag{2}
\end{equation*}
$$

We denote the determinant of a matrix A by $|A|$ and its ν-th section by A_{ν}, which is a matrix formed with elements of A lying in the first ν rows and
first ν columns. Then as Schur ${ }^{1)}$ proved,

$$
\delta_{\nu}=\left|\overline{B_{v}^{\prime}}, A_{y} A_{\nu}^{\prime}, B_{v}\right|=\left|\overline{B_{v}^{\prime}} B_{v}-\overline{A_{\nu}^{\prime}} A_{\nu}\right|=\left|\left(\overline{B^{\prime}} B-\overline{A^{\prime}} A\right)_{v}\right| \text {, so that } \delta_{n}=\left|\mathfrak{g}_{y}\right| \cdot \text { (4) }
$$

Then the following theorems hold:
Theorem, 1 (I. Schur).') The necessary and sufficient condition, that all roots of $f(x)=0$ lie in a unit circle $|x|<1$ is that the Hermitian form $\mathfrak{F}(x)$ is positive definite, or $\delta_{1}>0, \delta_{2}>0, \ldots, \delta_{n}>0$.
As Cohn proved, ${ }^{3)} \delta_{n}=R\left(f, f^{*}\right)$, where $R\left(f, f^{*}\right)$ is the resultant of $f(x)$ and $f^{*}(x)$, so that $\mathfrak{F}(x)$ is of rank n, when and only when $f(x)$ and $f^{*}(x)$ have no common factor.

Theorem 2 (Cohn). ${ }^{3} \quad$ If $f(x), f^{*}(x)$ have no common factor, then $\mathfrak{F}(x)$ is of rank n and when reduced to the normal form:

$$
\mathfrak{F}(x)=\left|y_{1}\right|^{2}+\left|y_{2}\right|+\ldots+\left|y_{\pi}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{\nu}\right|^{2}-\ldots-\left|z_{\nu}\right|^{2},
$$

π is the number of roots of $f(x)=0$ in $|x|<1$ and ν is that in $|x|>1$.
We will give a simple proot of Theorem 2.
2. Proof of Theorem 2.

We assume that $f(x)$ and $f^{*}(x)$ have no common factor, so that $f(x)=0$ has no root on $|x|=1$ and $\mathscr{S}(x)$ is of rank n. Let $f(x)=0$ have π roots in $|x|<1$ and ν roots in $|x|>1$, then $f^{*}(x)=0$ has ν roots in $|x|<1$ and π roots in $|x|>1$.

We assume that $a_{0} \neq 0, a_{n} \neq 0, a_{0}+\bar{a}_{n} \neq 0$ and $f(x)+f^{*}(x)=0$ has no double roots. Let $f(x)+f^{*}(x)=0$ have p roots $\left(\epsilon_{k}\right)$ in $|\dot{x}|<1$ and \dot{q} roots (η_{k}) on $|x|=1$, then it has p roots $\left(\frac{1}{\bar{\epsilon}_{k}}\right)$ is $|x|>1$, so that $2 p+q=\eta$. Since $f^{*}(x)-f(x), f^{*}(x)+f(x)$ have no common factor, we have in the neighbourhood of x,

$$
\begin{align*}
\frac{f^{*}(x)-f(x)}{f^{*}(x)+f(x)} & =\frac{c}{2}+\sum_{k=1}^{p}\left(\frac{r_{k}}{2} \cdot \frac{\epsilon_{k}+x}{\epsilon_{k}-x}+\frac{\eta_{k}^{\prime}}{2} \cdot \frac{1+\bar{\epsilon}_{k} x}{1-\bar{\epsilon}_{k} x}\right)+\sum_{k=1}^{q} \frac{\eta_{k}^{n}}{2} \cdot \frac{\eta_{k}+x}{\eta_{k}-x} \\
& =\frac{c+c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \cdot x^{n},(2 p+q=n) \tag{5}
\end{align*}
$$

where $\left|\epsilon_{k}\right|<1,\left|\eta_{k}\right|=1$.
In the both sides of (5), we put $\frac{1}{x}$ in place of x and take the conjugate

[^0]No. 5.] On Algebraic Equations, whose Roots lie in a Unit Circle or in a Half-plane. 315 complex of the quantities involved, then the left hand side changes its sign. From this, we conclude that $\bar{c}=-c, r_{k}^{\prime}=\bar{r}_{k}, \bar{r}_{k}^{0}=r_{k}^{0}$, so that c is purely imaginary and γ_{k}^{0} are real. Hence

$$
\begin{equation*}
c_{2}=\sum_{k=1}^{p}\left(r_{k} \epsilon_{k}^{-n}+\vec{r}_{k} \bar{\epsilon}_{k}^{n}\right)+\sum_{k=1}^{q} r_{k}^{0} \eta_{k}^{-n},\left(c_{0}=\text { real }\right) . \quad(n=0,1,2, \ldots) \tag{6}
\end{equation*}
$$

We consider a Hermitian form:

$$
H(x)=\sum_{0}^{n-1} c_{k-1} x_{i} \bar{x}_{k},\left(c_{-k}=\bar{c}_{k}\right), H=\left(\begin{array}{ll}
c_{0}, & c_{1}, \ldots, c_{n-1} \tag{7}\\
\bar{c}_{1}, & c_{0}, \\
\ldots, ., c_{n-2} \\
\frac{\ldots \ldots \ldots}{c_{n-1}}, \overline{c_{n-2}}, \ldots, c_{,}
\end{array}\right)
$$

Then, as Schur ${ }^{4}$ proved, we have easily

$$
\begin{equation*}
\left(\bar{B}^{\prime}+\overline{A^{\prime}}\right) H(B+A)=2\left(\bar{B}^{\prime} B-\bar{A}^{\prime} A\right)=2 \mathcal{S}_{2} \tag{8}
\end{equation*}
$$

since $|B+A|=\left(a_{0}+\bar{a}_{n}\right)^{n} \neq 0$, two Hermitian forms $H(x)$ and $\mathcal{S}(x)$ are equivalent, so that $H(x)$ is of rank n.
Now

$$
\begin{equation*}
H(x)=\sum_{k=1}^{p} H_{k}(x)+\sum_{k=1}^{\eta} H_{k}^{0}(x) \tag{9}
\end{equation*}
$$

where $H_{k}(x)$ is a Hermitian form formed with $\left(r_{k} \epsilon_{k}^{-\nu}+\bar{r}_{k} \bar{\epsilon}_{k}^{-\nu}\right)$ and $H_{k}^{0}(x)$ is that with ($\left.r_{k}^{n} \eta_{k}^{-\nu}\right),(\nu=0,1,2, \ldots, n-1)$.
Since

$$
\left|\begin{array}{cc}
r_{k}+\bar{r}_{k}, & r_{k} \epsilon_{k}^{-1}+\bar{r}_{k} \bar{\epsilon}_{k} \\
\bar{r}_{k} \overline{-}_{k}^{-1}+r_{k} \epsilon_{k}, & r_{k}+\bar{r}_{k}
\end{array}\right|=\left|r_{k}\right|^{2}\left(2-\left|\epsilon_{k}\right|^{2}-\frac{1}{\left|\epsilon_{k}\right|^{2}}\right)<0,
$$

$H_{k}\left(x_{0}, x_{1}, 0, \ldots, 0\right)$ is an indefinite form and since as easily be seen, $H_{k}(x)$ is of rank $2, H_{k}(x)$ can be reduced to the normal form: $\quad H_{k}(x)=\left|y_{k}\right|^{2}-\left|z_{k}\right|^{2}$.

Since $H_{k}^{0}(x)=\gamma_{k}^{0}\left|x_{0}+x_{1} \bar{\eta}_{k}+\ldots+x_{n-1} \bar{\eta}_{k}^{n-1}\right|^{2}$, if we denote the numbers of positive and negative r_{k}^{0} by α, β respectively, then $H(x)$ can be reduced to the nomal from:

$$
\begin{align*}
& H(x)=\left|y_{1}\right|^{2}+\left|y_{2}\right|^{2}+\ldots+\left|y_{p+\alpha}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{2}\right|-\ldots-\left|z_{p+\beta}\right|^{2} \\
&(2 p+\alpha+\beta=n) . \tag{10}
\end{align*}
$$

We will prove that $p+\alpha=\pi, p+\beta=\nu$.
Let $x=x(\lambda)$ be the root of $f(x)+\lambda f^{*}(x)=0$, so that $\eta_{k}=x(1)$, $f\left(\eta_{k}\right)+f^{*}\left(\eta_{k}\right)=0$. Then from $\left(f^{\prime}(x)+\lambda f^{*}(x)\right) d x+f^{*}(x) d \lambda=0$ and (5), we have

$$
\begin{gather*}
d x=\frac{-f^{*}\left(\eta_{k}\right) d \lambda}{f^{\prime *}\left(\eta_{k}\right)+f^{\prime}\left(\eta_{k}\right)}=\frac{f\left(\eta_{k}\right)-f^{*}\left(\eta_{k}\right)}{2\left(f^{\prime *}\left(\eta_{k}\right)+f^{\prime}\left(\eta_{k}\right)\right.} d \lambda=\frac{r_{k}^{0}}{2} \eta_{k} d \lambda, \quad \text { or } \\
d x=x \frac{r_{k}^{0}}{2} d \lambda \quad \text { at } \quad x=\eta_{k}, \lambda=1 . \tag{11}
\end{gather*}
$$

4) I. Schur : 1.c. (1).

Hence $f(x)+\lambda f^{*}(x)=0$ has a root in $|x|<1$ in a neighbourhood of η_{k}, if $r_{k}^{n}>0,1-\delta<\lambda<1$, or $r_{k}^{n}<0,1<\lambda<1+\delta$, when δ is small. Since $f(x)+f^{*}(x)=0$ has p roots in $|x|<1$, we conclude that

$$
f(x)+\lambda f^{*}(x)=0 \text { has } p+a \text { roots in }|x|<1, \text { if } 1-\delta<\lambda<1 \text { and }
$$

$$
\begin{equation*}
p+\beta \text { roots in }|x|<1, \text { if } 1<\lambda<1+\delta \tag{12}
\end{equation*}
$$

On the other hand, since $f(x)$ has π roots in $|x|<1$ and $f^{*}(x)$ has ν roots in $|x|<1$ and $|f(x)|=\left|f^{*}(x)\right|$ on $|x|=1$, we have by Rouchés theorem,

$$
\begin{array}{r}
f(x)+\lambda f^{*}(x)=0 \text { has } \pi \text { roots in }|x|<1, \text { if } 0<\lambda<1 \text { and } \\
\nu \text { roots in }|x|<1, \text { if } 1<\lambda . \tag{13}
\end{array}
$$

From (12), (13), we have $p+\alpha=\pi, p+\beta=\nu$, so that from (10),

$$
\begin{array}{r}
H(x)=\left|y_{1}\right|^{2}+\left|y_{2}\right|^{2}+\ldots+\left|y_{\pi}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2} \ldots-\left|z_{\nu}\right|^{2}, \\
(\pi+\nu=n) . \tag{14}
\end{array}
$$

Since $H(x)$ is of rank $n . n$ linear forms $y_{1}, y_{2}, \ldots y_{\pi}, z_{1}, z_{2}, \ldots, z_{\nu}$ of x_{0}, $x_{1}, \ldots x_{n-1}$ are linearly independent.

Since as remarked above, $H(x)$ and $\mathscr{S}(x)$ are equivalent, $\mathcal{F}(x)$ can be reduced to the normal form of the form (14). Hence Cohn's theorm is proved under the assumption, that $a_{0} \neq 0, a_{n} \neq 0, a_{0}+\bar{a}_{n} \neq 0$ and $f(x)+f^{*}(x)=0$ has no double roots. But as Cohn remarked this restriction can be removed as follows. We change the coefficients of $f(x)$ slightly, so that this condition is satisfied. Let $\mathfrak{F}^{\prime}(x)$ be the corresponding Hermitian form, then $\mathscr{F}^{\prime}(x)$ can be reduced to the normal form of the form (14). Since $|\mathfrak{F}| \neq 0$, we see easily that the numbers π and ν remain unchanged, when the variations of coefficients are sufficiently small, so that $\mathfrak{\mathscr { S }}(x)$ can be reduced to the normal form of the form (14), which proves Theorem 2.
3. Remark.

If $f(x)$ anl $f^{*}(x)$ have the greatest common factor $g(x)$ of degree $m(>0)$, then $\boldsymbol{f}(x)$ becomes of rank $n-m$. We assume, for brevity, that $g(x)=0$ has no double r.ots. Let $g(x)=0$ have p roots $\left(\epsilon_{k}\right)$ in $|x|<1$ and q roots $\left(\eta_{k}\right)$ on $|x|=1$, then it has p roots $\left(\frac{1}{\bar{\epsilon}_{k}}\right)$ in $|z|>1$, so that

$$
\frac{g^{\prime}(x)}{g(x)}=\sum_{k=1}^{p}\left(\frac{1}{x-\epsilon_{k}}+\frac{1}{x-\frac{1}{\bar{\epsilon}_{k}}}\right)+\sum_{k=1}^{n} \frac{1}{x-\eta_{k}}=\sum_{n=0}^{\infty} \frac{c_{n}}{x^{n+1}},(2 p+q=m)
$$

$\boldsymbol{c}_{2}=\sum_{k=1}^{p}\left(\epsilon_{k}^{n}+\bar{\epsilon}_{k}^{-v}\right)+\sum_{k=1}^{\eta} \eta_{k}^{n}=s_{n}$ (sum of the n-th power of the roots), where $\left|\epsilon_{k}\right|<1$, $\left|\eta_{k}\right|=1$. We form a Hermitian form:

$$
\begin{equation*}
H(x)=\sum_{0}^{m-1} c_{k-i} x_{i} \bar{x}_{k},\left(c_{-k}=\bar{c}_{k}\right) \tag{1.5}
\end{equation*}
$$

No．5．］On Algebraic Equations，whose Roots lie in a Unit Circle or in a Half－plane． 317 and as before we decompose $H(x)$ into the form：$\quad H(x)=\sum_{k=1}^{p} H_{k}(x)+\sum_{k=1}^{p} H_{k}^{0}(x)$ ， where $H_{k}(x)$ is a Hermitian form formed with $\left(\epsilon_{k}^{\nu}+\bar{\epsilon}_{k}^{-\nu}\right)$ and $H_{k}^{0}(x)$ is that with $\left(\eta_{k}^{\nu}\right)(\nu=0,1,2, \ldots, m-1)$ ．Then as before，we see easily that $H(x)$ can be reduced to the normal form：

$$
\begin{equation*}
H(x)=\left|y_{1}\right|^{2}+\left|y_{2}\right|^{2}+\ldots+\left|y_{p+q}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}-\ldots-\left|z_{p}\right|^{2} \tag{16}
\end{equation*}
$$

where p is the number of roots of $g(x)=0$ in $|x|<1$ and q is that on $|x|=1$ ． If $g(x)=0$ has multiple roots，then p and q are the numbers of distinct roots， multiple roots being counted once．From（16），we have：

The necsssary and sufficient condition，that all roots of $g(x)=0$ lie on $|x|=1$ is that $H(x)$ is positive definite．

II．Algebraic equations，whose roots lie in a half－plane．

Let

$$
\begin{align*}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}, g(x)=b_{1} x^{n-1}+b_{2} x^{n-2}+\ldots+b_{n} \\
& \left(a_{0} \neq 0, b_{1} \neq 0\right) \tag{17}\\
& \frac{g(x)}{f(x)}=\sum_{n=0}^{\infty} \frac{c_{n}}{x^{n+1}}, \\
& \left.R_{k}=\left|\begin{array}{l}
a_{0}, a_{1}, \ldots \ldots \ldots, a_{2 k-2} \\
0, a_{0}, \ldots \ldots \ldots, a_{2 k-3} \\
\ldots \ldots \ldots . \\
0,0, \ldots a_{0}, \ldots, a_{k} \\
b_{1}, b_{2}, \ldots \ldots \ldots, b_{2 k-1} \\
0, b_{1}, \ldots \ldots \ldots, b_{: k-2} \\
\ldots \ldots \ldots \\
0,0, \ldots, b_{1}, \ldots, b_{k}
\end{array}\right|\right\} k-C_{0}^{(k)}=\left|\begin{array}{l}
c_{0}, c_{1}, \ldots, c_{k} \\
c_{1}, c_{2}, \ldots, c_{k+1} \\
\ldots \ldots \ldots . \\
c_{k}, c_{k+1}, \ldots, c_{2 k}
\end{array}\right|,
\end{align*}
$$

where $a_{\nu}=0, b_{\nu}=0$ ，if $\nu>n$ ．Then as well known，${ }^{5)}$

$$
\begin{align*}
& R_{k}=(-1)^{\frac{k(k-1)}{2}} a_{0}^{2 k-1} C_{0}^{k-1)},{ }_{+} \text {so that } \\
& \quad R_{n}=R(f, g)=(-1)^{\frac{n(n-1)}{2} a_{0}^{2 n-1} C_{0}^{(n-1)}} \tag{18}
\end{align*}
$$

where $R(f, g)$ is the resultant of f and g ．Hence if $f(x)$ and $g(x)$ have no common factor，then $C_{0}^{(n-1)} \neq 0$ ．Let

$$
\begin{gather*}
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}, f(x)=\bar{a}_{0} x^{x}+\bar{a}_{1} x^{n-1}+\ldots+\bar{a}_{n} \\
\left(\bar{a}_{0}=a_{0}>0\right) . \tag{19}
\end{gather*}
$$

5）漛原松三郎 ：代数學第一卷 462 頁，Netto，Crelle 116 （1896），Netto，Algebra I．p． 86 ．

We assume that $f(x)$ and $\bar{f}(x)$ have no common factor. Then $f(x)=0$ has no real roots. Let $f(x)=0$ has π roots in $\mathfrak{J} x<0$ and ν roots in $\mathcal{J} x>0$. Then $\bar{f}(x)=0$ has ν roots in $\mathcal{J} x<0$ and π roots in $\mathcal{J} x>0$., We as- sume that $f(x)+\bar{f}(x)=0$ has no double roots. Let $f(x)+\bar{f}(x)=0$ have p roots $\left(\epsilon_{k}\right)$ in $\mathcal{J} x>0$ and q roots $\left(\eta_{k}\right)$ on the real axis, then it has p roots $\left(\bar{\epsilon}_{k}\right)$ in ञั $x<0$. Since $f(x)+\bar{f}(x), f(x)-\bar{f}(x)$ have no common factor, we have

$$
\begin{align*}
\frac{f(x)-\bar{f}(x)}{i(f(x)+\bar{f}(x))} & =\sum_{k=1}^{p}\left(\frac{r_{k}}{x-\epsilon_{k}}+\frac{r_{k}^{\prime}}{x-\bar{\epsilon}_{k}}\right)+\sum_{k=1}^{q} \frac{r_{k}^{0}}{x-\eta_{k}} \\
& =\sum_{n=0}^{\infty} \frac{c_{n}}{x^{n+1}},(2 p+q=n), \tag{20}
\end{align*}
$$

where $\mathfrak{J} \epsilon_{k}>0$ and η_{k} are real.
If we take the conjugate complex of the quantities involeved in (20), then the left hand side is unchanged. From this, we conclude that $r_{k}^{\prime}=\bar{r}_{k}, \bar{r}_{k}^{0}=r_{k}^{0}$, so that r_{k}^{0} are real. Hence

$$
\begin{equation*}
c_{n}=\sum_{k=1}^{p}\left(r_{k} \epsilon_{k}^{n}+\bar{\gamma}_{k} \bar{\epsilon}_{k}^{n}\right)+\sum_{k=1}^{q} r_{k}^{0} \eta_{k}^{n} \tag{21}
\end{equation*}
$$

so that c_{n} are real. We form a real quadratic form:

$$
\begin{equation*}
\mathcal{H}(x)=\sum_{0}^{n-1} c_{i+k} x_{i} x_{k},|\mathfrak{K}|=C_{0}^{(n-1)} \tag{22}
\end{equation*}
$$

Since $f(x)-\bar{f}(x), f(x)+f(x)$ have no common factor, $C_{0}^{(n-1)} \neq 0$ as remarked in the begining of the proof, so that $\mathscr{S}(x)$ is of rank n
Let as before, $\mathcal{F}_{2}(x)=\sum_{k=1}^{p} H_{k}(x)+\sum_{k=1}^{q} H_{k}^{0}(x)$, where $H_{k}(x)$ is a quadratic form formed with $\left(r_{k} \epsilon_{k}^{\nu}+\bar{r}_{k} \bar{\epsilon}_{k}^{\nu}\right)$ and $H_{k}^{0}(x)$ is that with $\left(r_{k}^{n} \eta_{k}^{\nu}\right),(\nu=0,1,2, \ldots, n-1)$. Since

$$
\left|\begin{array}{l}
\bar{r}_{k}+r_{k}, r_{k} \epsilon_{k}+\bar{r}_{k} \bar{\epsilon}_{k} \\
r_{k} \epsilon_{k}+\bar{r}_{k} \bar{\epsilon}_{k}, r_{k} \epsilon_{k}^{2}+\bar{r}_{k} \bar{\epsilon}_{k}^{2}
\end{array}\right|=\left|r_{k}\right|^{2}\left(\epsilon_{k}-\bar{\epsilon}_{k}\right)^{2}<0
$$

$H_{k}\left(x, x_{1}, 0 \ldots 0\right)$ is an indefinite form. Since as easily be seen, $H_{k}(x)$ is of rank $2, H_{k}(x)$ can be reduced to the normal form: $\quad H_{k}(x)=y_{k}^{2}-z_{k}^{2}$.

Since $H_{k}^{0}(x)=r_{k}^{0}\left(x_{0}+x_{1} \eta_{k}+\ldots+x_{n-1} \eta_{k}^{n-1}\right)^{2}$, if we denote the numbers of positive and negative r_{k}^{0} by α, β respectively, then $\mathscr{S}(x)$ can be reduced to the normal form:

$$
\begin{array}{r}
\mathscr{S}(x)=y_{1}^{2}+y_{2}^{2}+\ldots+y_{p+\alpha}^{2}-z_{1}^{2}-z_{2}^{2}-\ldots-z_{p+\beta}^{2} \\
 \tag{23}\\
(2 p+\alpha+\beta=n)
\end{array}
$$

We will prove that $p+\alpha=\pi, p+\beta=\nu$.

No. 5.] On Algebraic Equat:ons, whose Roots lie in a Unit Circle or in a Half-plane. 319

Let $x=x(\lambda)$ be the root of $f(x)+\lambda f(x)=0$, so that $\eta_{k}=x(1)$,
$f\left(\eta_{k}\right)+\bar{f}\left(\eta_{k}\right)=0$. Then from (20), we have as before, at $x=\eta_{k}, \lambda=1$,

$$
\begin{gather*}
d x=\frac{-f\left(\eta_{k}\right)}{f^{\prime}\left(\eta_{k}\right)+\overline{f^{\prime}\left(\eta_{k}\right)}} d \lambda=\frac{f\left(\eta_{k}\right)-f\left(\eta_{k}\right)}{2\left(f^{\prime}\left(\eta_{k}\right)+\bar{f}^{\prime}\left(\eta_{k}\right)\right)} d \lambda=i \frac{r_{k}^{0}}{2} d \lambda, \quad \text { or } \\
d x=i \frac{r_{k}^{0}}{2} d \lambda \quad \text { at } x=\eta_{k}, \lambda=1 . \tag{24}
\end{gather*}
$$

Hence $f(x)+\lambda \bar{f}(x)=0$ has a root in $\widetilde{\Im} x>0$ in a neighbourhood of η_{k}, if $r_{k}^{0}>0,1<\lambda<1+\delta$,or $r_{k}^{0}<0,1-\delta<\lambda<1$, when δ is small. Since $\bar{f}(x)+f(x)=0$ has p roots in $\mathfrak{J} x>0$, we conclude that

$$
\begin{array}{r}
f(x)+\lambda \bar{f}(x)=0 \text { has } p+\alpha \text { roots in } \mathfrak{\Im} x>0, \text { if } 1<\lambda<1+\delta \text { and } \\
p+\beta \text { roots in } \mathfrak{\Im} x>0, \text { if } 1-\delta<\lambda<1 . \tag{25}
\end{array}
$$

On the other hand, since $\frac{f(x)}{(x-i)^{n}}$ and $\frac{\bar{f}(x)}{(x-i)^{n}}$ are regular in $\tilde{J} x \geqq 0, x=\infty$ being included and $\left|\frac{f(x)}{(x-i)^{n}}\right|=\left|\frac{\bar{f}(x)}{(x-i)^{n}}\right|$ on the real axis, if we map $\mathfrak{\Im} x>0$ on $|z|<1$ conformally and apply Rouché's theorem on $\frac{f(x)}{(x-i)^{n}}+\lambda \frac{\bar{f}(x)}{(x-i)^{n}}$ $=0$, then we see that

$$
\begin{array}{r}
f(x)+\lambda \bar{f}(x)=0 \text { has } \pi \text { roots in } \Im x>0, \text { if } 1<\lambda \text { and } \\
\nu \text { roots in } \Im x>0, \text { if } 0<\lambda<1 . \tag{26}
\end{array}
$$

From (25), (26), we have $p+\alpha=\pi, p+\beta=\nu$, so that from (23),

$$
\begin{equation*}
\mathfrak{S}(x)=y_{1}^{2}+y_{2}^{2}+\ldots+y_{\pi}^{2}-z_{1}^{2}-z_{2}^{2}-\ldots-z_{\nu}^{2},(\pi+\nu=n) . \tag{27}
\end{equation*}
$$

Since $\mathcal{F}(x)$ is of rank n, n linear forms $y_{1}, \ldots, y_{\pi}, z_{1}, \ldots, z_{\nu}$ are linearly independent.

We assumed that $f(x)+f(x)=0$ has no double roots. If this condition is not satisfied, then we change the coefficients of $f(x)$ slightly and conclude as before that $\mathfrak{S}(x)$ can be reduced to the normal form of the form (27).

Hence we have:
Theorem 3. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}, \bar{f}(x)=\bar{a}_{0} x+\bar{a}_{1} x^{n-1}+\ldots+\bar{a}_{n}$, ($a_{0}>0, a_{n}=\alpha_{n}+i \beta_{n}$). We assume that $f(x)$ and $\bar{f}(x)$ have no common factor. Let

$$
\frac{f(x)-\bar{f}(x)}{i(f(x)+\bar{f}(x))}=\frac{\beta_{1} x^{n-1}+\beta_{2} x^{n-2}+\ldots+\beta_{n}}{\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\ldots+\alpha_{n}}=\sum_{n=0}^{\infty} \frac{c_{n}}{x^{n+1}}, \mathcal{F}_{2}(x)=\sum_{0}^{n-1} c_{i+k} x_{i} x_{k 0}
$$

Then, $\mathcal{F}(x)$ is of rank n and when reduced to the normal form;

$$
\mathfrak{F}(x)=y_{1}^{2}+y_{2}^{2}+\ldots+y_{\pi}^{2}-z_{1}^{2}-z_{2}^{2}-\ldots-z_{\nu}^{2},(\pi+\nu=n),
$$

π is the number of roots of $f(x)=0$ in $\mathfrak{J} x<0$ and ν is that in $\mathfrak{\Im} x>0$.

Since by (18),

$$
\left.R_{k}=\left|\begin{array}{l}
a_{0}, a_{1}, \ldots \ldots, \\
0, a_{0}, \ldots \ldots, \\
a_{2 k-2} \\
\ldots \ldots \ldots . \\
0,0, \ldots a_{0}, \ldots, a_{k}
\end{array}\right| \right\rvert\, k k-1
$$

we have:
Theorem 4. The necessary and sufficient condition, that all roots of $f(x)$ $=0$ lie in $\mathfrak{J} x<0$ is that $\mathscr{H}(x)$ is positive definite, or $(-1)^{\frac{k(k-1)}{2}} R_{k}>0$, ($k=1,2, \ldots, n$).

From Theorem 3, we have
Theorem 5. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n},\left(a_{0}>0, a_{n}=\alpha_{n}+i \beta_{n}\right)$. We assume that $f(-i x)$ and $\bar{f}(-i x)$ have no common factor. Let

$$
\begin{gathered}
F(x)=\frac{f(-i x)}{(-i)^{n}}, \\
\frac{F(x)-\bar{F}(x)}{i(F(x)+\bar{F}(x))}=\frac{\alpha_{1} x_{n-1}+\beta_{2} x^{n-2}-\alpha_{3} x^{n-3}-\beta_{4} x^{n-4}+\alpha_{5} x^{n-5}+\beta_{6} x^{n-6}-\ldots}{\alpha_{0} x^{n}+\beta_{1} x^{n-1}-\alpha_{0} x^{n-2}-\beta_{3} x^{n-3}+\alpha_{4} x^{n-4}+\beta_{5} x^{n-5}-\ldots} \\
=\sum_{n=0}^{\infty} \frac{c_{n}}{x^{n+1}}, \mathscr{S}(x)=\sum_{0}^{n-1} c_{2+k} x_{i} x_{k 0}
\end{gathered}
$$

Then, $\mathfrak{F}(x)$ is of rank n and when reduced to the normal form:

$$
\mathfrak{S}(x)=y_{1}^{2}+y_{2}^{2}+\ldots+y_{\pi}^{2}-z_{1}^{2}-z_{2}^{2}-\ldots-z_{\nu}^{2},(\pi+\nu=n),
$$

π is the number of roots of $f(x)=0$ in $\mathfrak{F} x<0$ and ν is that in $\mathfrak{Y} x>0$.
From Theorem 5, we have the following extension of Hurwitz's theorem, ${ }^{\text {© }}$ who assumed that all a_{n} are real.

Theorem 6. The necessary and sufficient condition, that all roots of $f(x)$ $=0$ lie in $\mathfrak{F} x<0$ is that $\mathscr{F}(x)$ is positive definite.

Analogous theorems as Theorem 3, 4, 5, 6 were proved by M. Fujiwara' ${ }^{\text {º }}$ by means of Bézoutians.
6) A. Hurwitz: Über die Bedingung, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. Math. Ann. 46 (1895).
7) M. Fujiwara: Über die algebraischen Gleichungeu, deren Wurzeln in eimem Kreise oder in einer Halbebene liegen. Math. Zeits. 24 (1926).

[^0]: 1) I. Schur: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Grelle, 147 (1917).
 2) I. Schur: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind (Fortsezung). Crelle 148 (1918).
 3) A. Cohn : Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Zeits. 14 (1922).
