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42. Note on the theory of conformal representation by
meromorphic functions. L

By Yisaku KOMATU.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.L.A., May 12, 1945.)

§1. Preliminaries.
‘We consider, in general, on the one hand a family of analytic functions
1.1) {9(O},. g(e0)=00, ¢'(0)=1,
defined on | { | >1 and normalized at {= oo, as is here explficitly written, and on
the other a family of analytic functions
(1.2) {f(x)}, f@)=0, f(0)=1,
defined in | z|<1 and normalized at z=0. We can then establish a ono-to-one
correspondence between them by the relations
(13) C=1, gO)f()=1 ie g(O)=fC ), f(D=9(z"D";
the corresponding functions g(§) and f(z) behave, furtheremore, both analytic
and schlicht (univalent) at the same time in their respective domains of definition,
the case to which we shall confine ourselves in the following lines, Under these
circumstances any properties of the one family imply at once the corresponding
ones of the other. As a matter of fact, it is especially remarkable that the so-
called Bieberbach’s area theorem concerning the former family has paved a way
also to a systematic development of the theory of the latter.

But the considerations on the latter are often confined to the sub-family, con-
sisting of regular functions only, that is to say, consisting of only those functions
J(2) which correspond, by (1.3), to special functions g({) vanishing nowhere on

|§| >1. Various properties of this sub-family have been hitherto, indeed partly
by an essential utilization of the supplementary restriction in question, i.e. the
regularity, investigated in full detail. When the family (1.1) is, however, sup-
posed to be merely schlicht, we should rather consider the schlicht and generally
meromorphac family (1.2) itself which correspond, by the relations (1.3), ex-
actly to the whole family (1.1). The results on the family just ranged have been,
though often of importance and very useful, established hitherto comparatively
few.

Even if we assume that the family (1.2) of schlicht functions are meromor-
phic, each member f(z) has, as a matter of course, at most only one pole of the
first order in the basic circle | z|<1. We shall however consider here, from the
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above-stated point of view, the whole family (1.2) of schlicht and normalized
functions, inclusive of ones having a pole in the unit-circle, and note some interes-
ting consequences, connected with this family, of well-known theorems in the
theory® of the family (1.1). The corresponding problems for the case-of doubly-
connected basic domain will also be explicitly treated in later papers.

8§2. Problems to be considered.

Let f(2) denote preliminarily, a function, regular analytic and schlicht in
|z] <1, which is moreover normalized at the origin i.e. such that f(0)=0
and f'(0)=1. Then its beginning Taylor coefficients @;=f"(0)/2 and as
=f""(0)/6 are always subject to the restrictions

(2.1 las|=<2 and |as|=3
by the theorems of Bieberbach® and Lwner® respectively. Accordingly if, for
instance, only one of them does not hold, the function must possess necessarily a
pole, of course as previously noticed, of the first order in the interior of the unit-
rivcle, 'We may therefore propose in general the question how the position of the
pole, z, say, if exists at all and its residue

(2.2) 4=lim (z—2)f()= [—;,_((%’_]H

must be restricted, when such coefficient @ or @ is preassigned. This is obviously
almost equivalent with an analogous one relating to the position of the zero-point

2.3) Co=i
2o
of g({) and its differential coefficient at this point, viz.

(24) FCH=—2=,
A
9(&) denoting here, of course, the function which corresponds to f(z) by the re-
lations (1.3).
It is a matter of common knowledge that the so-called Koebe-Bieberbach’s

1) Various results on this discipline obtained up to the present are, together with the
detailed list of literatures including those cited in the following, collected in the author’s
recently published book: Conformal representation, I. (Japanese) 1944.

2) L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte
Abbildung des Einheitskreises vermitteln. Sitzungsber. preuB. Akad. Wiss. Berlin (1916),
940-955.

3) K. Lowner, Untersuchungen iiber schlichte konforme Abbildnngen des Einheits-
kreises, I. Math. Annalen 89 (1923), 103-121.
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one fourth theorem® takes a fundamental position in the whole theory of regular
schlicht fonctions in |z|-<1. But, in the case of meromorphic functions, a
famous theorem of Montel,” plays an analogous réle, on which further discussions
have been done by Bieberbach,” Fenchel” and the others.® In connection with
this last-mentioned theorem, we shall take here a glance also at the ranges covered
by image-domains which arise from |z| <1 by any transformation w=f(z) in
question.

§3. Ranges of the transformed domains.

We consider in the first place, with a view to obtaining a result of Fenchel
afresh but more briefly, a function g({) of the family (1.1) whose Laurent ex-
pansion about the point at infinity is evidently of the form

(3.1) 9= H"=C+ bo+%-
with beginning coefficients

(3.2) bh=—ay, b=dai—as....
Hence, by means of a well-known theorem of Lwner™ which states

(3.3) | 90—t <IC]| +% (ICI>D
we have at once an inequality

1 1
3.4 '___+a2 <1, <1).
(3.4) 1) 2] [z] (lz|<1)

4) P. Koebe, Uber die Uniformisierung beliebiger analytischer Kurven. Nachr. Ges.
Wiss. Gottingen (1907), 191-210: Uber die Uniformisierung der algebraischen Kurven, I.
Math. Annalen 69 (1909), 145-224; Abhandlungen zur Theorie der konformen Abbildung,
III. Der allgemeine Fundamentalsatz der konformen Abbildung nebst einer Anwendung auf
die konforme Abbildung der Oberfliche einer korperlichen Ecke. Crelles Journal 147
(1917), 67-104; etc. L. Bieberbach, Uber einige Extremalprobleme im Gebiete der konfor-
men Abbildung. Math. Annalen 77 (1916), 153-172. Cf., also G. Faber, Neuer Beweis
eines Koebe-Bieberbachschen Satzes iiber konforme Abbildung. Sitzungsber. Bayer. Akad.
Wiss. Miinchen (1916), 3942,

5) P. Montel, Sur les domaines formés par les points représentant les valeurs d’une
fonction analytique. Ann. Sci. Ecole Norm. Sup. (3) 46 (1929), 1-23.

6) L. Bieberbach, Uber schlichte Abbildung des Einheitskreises durch meromorphe
Funktionen. Sitzungsber. preuS. Akad. Berlin (1929), 620-624; Uber schlichte Abbildung
des Einheitskreises durch meromorphe Funktionen, II. ibid. (1937), 3-9.

7) W. Fenchel, Bemerkungen iiber die im Einheitskreises meromorphen schlichten
Funkionen. Sitzungsber. preuB. Akad. Berlin (1931), 431-436.

8) Cf., for example, E. Rengel, Uber einige Schlitztheoreme der konformen Abbildung.
Schriften d. math. Sem. u. Inst. f. angew. Math. d. Univ. Berlin 1 (1932), 141-162.

9) K. Lowner, Uber Extremalsiitze bei der konformen Abbildung des AnBeren des
Einheitskreises. Math. Zeitschr. 3 (1919), 65-77.
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Thus the distortion theorem of Fenchel'® is an immediate consequence of the
last inequality, that is, we have at any ease

||
(3.5) 'f(z)lgl+la,]|z|+|z|’

for | z| <1, and further, if (as| >2,

2]
(3.6) | St

for h(|a:|)<|z|<1, where h=h(a) (¢>2), 0<h<1, denotes the unique

positive root of the quadratic equation
h*—ah+1=0,

i.e.

3.7) Ma)=-2- -/ <1

The former inequality (3.5) was, however, already noticed by Gronwall,' by
using the method just adopted here. According to Fenchel, we can then conclude
from (3.6) that the position of pole is limited by the relation

(3.8) e S W aaly=12 L~/ TauF F

provided |a.| >2. But this result follows more directly also from (3.4). In
fact, we have, since f(2z,)= oo, the inequality
(3.9) lazlg—:THz,.I.

which implies at once the proposition (3.8).

An opposite estimation for the distance | z,, | of the pole from the origin is
lacking in the above result. Therefore, we attempt now, as some complement,
to deduce such an estimation. 'We make here, in order to obtain first a lower
bound depending only on || for the quantity | g({) |, use of the Bieberbach’s
area theorem," viz.

(3.10) Yo jbl <1

n=1

1t follows then, by using the Schwarz’s inequa]ity together, that

:211 <’/X"|b»l’ Yuicr <V gpig

nw=l

and hence

10) W. Fenchel, loc. cit. 8).

11) T. H. Gronwall, On the distortion in conformal mapping when the second cofficient
in the mapping function has an assigned value. Proc. Nat. Acad. Sci. 6 (1920), 300~302.

12) L. Bieberbach, loc. cit. 2); G. Faber, loc. cit. 4).
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19O 12 1¢1 = 18] =7 1g— LT
MEAT=
The equality sign appears here, as is easily verified, save at {=co not at all.
Thus, denoting by k=k(a) (a==0), 0<k<1, the unique positive root of the
transcendental equation

A _ 1
Pl Ve -7’
we have an inequality of disortion, i.e.

@ 1< 2
1= lanl 5l = 2V lg

for 0<|z| < k and at the same time an estimation
(3.11) |2 | > k(| @)
which is of a desired form."
But the result just derived is rough enough, while the limit given in (3.8)
is surely attained by, and only by, the functions of the form

(3.12) f(z)::_l—ag—zz-i-:s? (| a:|>2),

where e is a complex number with absolute value unity and with the same argu-

ment a8 @, i.e. e=a,/ | a:
The function (8.12) gives, as is easily seen, the conformal representation of

e
|as|£2°
In order to obtain his distortion formulae (3.5) and (3.6), Fenchel has first
proved the following theorem:
The image of |z|<1 by the transformation w=f(z) contains always |w |

<m’ and contains further | w | >_|_azli—?

After we have, however, obtained the distortion formulae (2.5) and (3.6) pre-
viously, the theorem just stated follows conversely from them almost immediately.

Now, with regard to the Laurent coefficients about the origin of regular
schlicht and normalized functions, the precise'limitation is, 48 has been already
noticed in (2.1), known also for | as| besides |a@;|. In connection with this
circumstance, we show here that an analogous theorem can also be obtained, if

| @3 | is preassigned:

|z| <1 onto the whole plane cut along a segment joining the two points —

also provided | a; |> 2.

13) Some other results belonging to the same category as (3.8) or (3.11) will be
discussed in the later paragraph §6.
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Theorem 1. The image of | z| <1 by the transformation w=jf(z) con-

1 1
Vies|+1+2 Ve [+1—-2
also provided | as|>3.

We state, before proof, a preparatory remark on the relation of this theo-
rem to the Fenchel’s. As we have, by means of the inequality |5, |<1 followed
from (3.10) and of the second relation in (3.2), always the inequality

(3.13) las| +1=az|?
the first half of the theorem is evidently contained in that of the Fenchel’s. But,
provided that | a;|>2, we have, by (3.13), necessarily | @; |>3 and furtheremore
1 1
las| —2 = VT as[+1—2
The latter- half of theorem gives therefore generally a better limitation than that
of Fenchel.
Now, to prove the theorem in question, we introduce a function defined by

F(z)=——cif§zz) =z+( g+%)z”+ (a3+ 2Z’+—lc?)z’+... ,

where ¢ denotes any boundary point of the image of |z|<1 by the mapping w
=f(2z). The function F(z) being regular and schlicht in |z|<1, it follows at
once from the generally valid estimations in (2.1) that

tains always |w| < , and contains further |w|>

a2+__]:._
[

Hence, the former inequality, together with (3.13), implies

1 1
3.15 c|l= > -
(315) el las] +2 = Ve[ +1+2

while we obtain from the latter, by taking the former too into account, in ordex
the inequalities

(3.14)

<2 and |a3+2—“’+ic,l§3.
[

1

a=las| ——— @+ — | ————,
._.I 3] Iclz

cl c

4 , 1 _ 1\
oo +1S+ b —(2+W),

2 [ 1

and finally provided | as|>3,

(3.16) lel 1

Ve +1-2

Both estimations (8.15) and (3.16) are nothing but what was to be proved.
We complete next the theorem just proved by the following supplementary

IA

theorem.
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Theorem 2. The limits mentioned in the preceding theorem ave both
precise.

To prove this, we observe the inequalities (3.15) and (3.16). In a converse
manner as the derivations show, the either equality can appear, by virtue of (3.2),
only if there exists a complex number e such that

A—ay=F =g "B =gmn, = T
@]
and moreover if the mapping function is of the form
S '=C—a.+C,
2 z
@I e e
which coincides just with that given in (3.12). The functions of this form map
|z] <1, as is already noticed, onto the whole plane cut along a slit between the
two points

4 e
|@:| £2 B I/T&:I—-ﬁzl:ﬁ
Hence, these and only these functions attain indeed the limits.
The already named Montel-Bieberbach’s theorem, which can be regarded as
a consequence of Fenchel’s result, can also be derived very briefly from our theo-
rem. In fact, if |as| <4, then

1 1
—_——— =V'5 —2;
Ve[ +1+2 V5 +2
and if | as [ =4, then
1 1 —
= =v5 +2.
V |03|+1—2 V5 —2

Hence, the image of | z| <1 by the mapping w=f(z) covers always either
|w| <V5 —2o0r|w| >V5 +2, and the functions (3.17) with | as| =4 and

those alone are extreme for both bounds ; this is just the content of the Montel-
Bieberbach’s theorem,

Now, we shall further remark that an another source of this theorem can
be found in a theorem due to Landau,'" which states that, if a function

_ 1.V .
‘P(“)—T'*‘E;Ynz

is schlicht and non-vanishing in | z| <1, the inequality

14) E. Landau, Der Picard-Schottkysche Satz und die Blochsche Konstante. Sitzungsber.
preuB. Akdd. Wiss. Berlin (1926), 467-474.
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l')’ol §2V(—-:-l—-—i—q—)

is valid for any quantity @ with |y, | <6< 1, where the function V=V (N) is
defined by the parametric equations

N= (u + %)e“‘, V=_v+1)e™

In fact, applying this theorem to the function
1 1 1

_ 1 2
F(z) —T—‘z—+(ag+7)+(az aa)z+ eee

with any bauudary point ¢, we obtain at once
<oy( 1t e "f'——“s L)

a,z-l-i
c

As N varies from 0 to %, the fuuction V() increases monotonously from 0

to 1, and the quantity | ai—a,| = | b; | never exceeds the unity. Therefore, the
right hand side of this inequality is surely significant at any time. Thus, as
above, we have first

1

[ | +2V(—-————1+ |ai—a,| )
1

(3.18) el =

for any case, while on the other hand we have

(3.19) o] < L ,
|| —ap (L¥]g=a] )
4

provided that the denominator on the right hand side is positive ; if | @z | >2, it
is actually the case, because we have then

las| —2W( 2 1%=0] V> |4, —2>0.
1

Hence, if
2—
[ ae| _2v<_]i£:_:ﬂi|_);o>o ,

then we have from (3.19)
1
(3.20) Jel é‘? ’

and otherwise we have from (3.18)
1

o+4v(i+_|%ﬁs_l_) ’

(3.21) le| >
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Now, by teking particularly C=1/5 —2, we are led to the Montel-Bieberbach’s
theorem, because we have then, for the bounds in (3.20) and (3.21), the quanti-
ties

%=1/5‘+2 and 0+4V(m) (Z 014 =V'5 —2)
4

respectively. The preciseness of the limits is also a consequence of that of the
Landau’s limit.



