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66. Note on Riemann Sum.

By Shin-ichi Tzumi, Tamotsu TsucHIKURA, and Shigeki Yano.
(Comm. by S. KAKEYA, M.1. A., Dec. 12, 1946.)

1. Introduction.

B. Jessen has proved the following theorem:
Theorem. Let f(x) be an integrable function in the interval (0,1) and its
Riemann sum be
P = Er(s+ L)
n p=1 ”
Then

Fon (x) > f 1f(t) dt
0

almost everywhere.
More generally, if n; divides mz+1 for any &, then

W o~ [ 10 a
[1]

almost everywhere.

The object of this paper is to prove some related thearems. In Theorem
2 we prove that in Jessen’s theorem we can replace the condition that =
divides #z+1 by the Hadamard condition

@ ne1 | e >a>1(R=1,2,..)
with an additional condition that
®3 (anlog n, bulog n; n=1,2,..)

is a sequence of Fourier coefficients of an integrable function, where (as , ba;
» =1, 2, ...) being that of f(x). This is derived from Theorem 1 as a special
case.

In Theorem 4 we prove that the arithmetic mean of the Riemann sum

@ ERw- froa
- ]

almost everywhere under the condition of Theorem 2. This is contained in
Theorem 3.
Finally, in Theorem 5 and 6 we prove Lf-analogue of Theorem 1 and 3.
In the proof of these theorems we use the method in the paper “S. Izu-
mi and T. Kawata, Notes on Fourier Series (1): Riemann sum,” Proc. Imp.
Acad,, 13(1937), which contains some mistakes so that the stated theorem is
not correct.
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2. Theorems 1 and 2.

Theorem 1. Let (pn) be a positive sequence such that (1| ps) is convex and

1/pn— 0. Let f(x) be an integrable function in (0,1) and its Fourier series
be

®) f) ~ _go_ + E.'l(an cos 2 mnx + by sin 2wnx).
n=

If

(6) (anpn, bnpn; n=12, .... )

is a sequence of Fourier coefficients of an integrable function, then (1) holds for
almost all x, where (n) is taken such as X1/ pn, converges.

For example, if p» =logtn (p>1), then X 1/p,, converges when np =
[ak] for any @ >1. In Jessen's theorem ¢ = 2, and in our case # does not
divides #+1 in general. As a consequence of Theorem 1, we have

Theorem 2. Let f(x) be an ntegrable function in (0,1) and its Fourier
series be (5). If (3) is a sequence of Fourier coefficients of an integrable func-
tion, then (1) holds for (mz) with the Hudamard condition (2).

We will now prove Theorem 1. By elementary calculation

1 k=1
Fp(x) = —,;—Eof(x+v/k)

~ —azo— +Z 1(a,.k cos 2 tnk x + buk sin 27 nkx).
n=

Without loss of generality we can suppose that ay = 0. Hence we have to
prove that F,,k (%) tends to zero almost everywhere.
By the W.H. Young theorem

dr/2+ °Z°.' oS 27 nx | pm,,
n=1

is a Fourier series of a non-negative integrable function, which we denote by
ki (%), where dr is taken such that

de, 1/pr, 1/pn
is convex and dr tends to zero as k increases indefinitely.
By the assumption there is an integrable function g(x) such that

g~ ”é’l(an c0s 27 #x + by sin 27 nx) py .
Thus we have
/; lhk (k) g(t—2x)dt ~ E.‘l(a,.k c0s 27 nkx + b sin 21 nkx),
and then
Fi(d) = /‘1 o (k) g (4~ dt
0
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almost everywhere.
If g(®) is bounded, then there is an M such as | g(x)| =M. Hence

1 1
[f hk(kt)g(t-—x)dt‘éf () g(t — %) dt
1] 0
1
=M{[ h.(k)adt
/; "

M pk 1
=7 [ m@®dt=M | hm@®dt=d M,
2, J.

which tends to zero as k& — .
In the general case, let us put
Ex=@1g@®|>mn=1,2,... )
whose measure tends to zero as # — . Then

'/;1 '[Eflnk(k(t+x))g(t)dt dxél/:dxﬁmhk(k(t+x))lg(t)|dt

=f|g<t)ldtf‘hk kG + N dr=di [12@] dt.
E,, 0 E,,

Since we can take dr=2/p for k= ko, Zdn, converges. Therefore we

have
I{E }dxs(ﬁd ) (g dt
j; k=1 PR j;m

which tends to zero as # — . Hence there is a sequence (m,) such that

fim ¥ [ imnnge—na
Ep,

f o (i £) g (=) 8t
Em

=0

y—oo k=1

almost everywhere, and then, for any positive ¢, there is a ¢ such that

fh”k(nk Dgt—Ddt|<e
Em

®
almost everywhere for all %.
On the other hand

1
f hn, (o ) g (¢ — 2) dt = f Fony (1 ) g (¢ — 2y dit
0 Ep,

+ /'h»k(nk De(t— 2 dt,
CE,,

where CE denotes the complementary set of E. The second term of the
right hand side tends to zero as k£ — 0, as was proved. Thus

flhnk (e t)g(t — x)dt
0

almost everywhere. Since ¢ is arbitrary, the theorem is proved.

=<e¢

lim sup
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3. Theorems 3 and 4.

Therem 8. Let (pn) be a positive sequence such that X 1] nps converges,
and (1] pn) is convex. Let f(x)-be an integrable function in (0,1) and its Four-
ier series be (5). If (6) is a sequence of Fouvier coefficients of an integrable
Sunction, then (4) holds almost everywhere.

For example, if p» = logt n(p >1), then Z 1/ nps converges, and (1/ps)
is convex. Let f(x) be an integradie function in (0,1). Then we get

Theorem 4. Under the assumtion of Theovem 2, (4) holds almost every-
where.

For the proof of Theorem 3 it is sufficient to prove the convergence of
the series

kZ___ . Fr ()] k.

Now

21RO k= EG | [ mGgt-2a
0

EMZdy [ n=MZ 1] npp< 0.
Thus we get the required.

4. Theorems 5 and 6.

Theorem 5. Let (pn) be a positive sequence such as (1| pn) is convex and
1/pn—0. Let f(x) be an integrable function in (0,1) and its Fourier series be
(6) and (6) be a sequence of Fourier coefficients of an integrable function in Lt

(p>1), then () holds for almost all x, where (ni) is taken such as
Z1/pt Alp+1/g=1)
converges.

For the proof we use the notations in the proof of Theorem 1. By the
positiveness of Az () and the Holder inequality,

/‘ i () gt — D dt (g \ /‘ ' (et by (et g 2 — 2) dt\
0 0

= ( [ w0 a)( [ manise—ofa)”

r<a’’ [ " ki) gt — 2 [,
0

f " (k) g (t — %) dt
0

1 |
[ tny o 05t~ 2t "éx
0

00 bla 1 1 ?
= 3 dn, f dxf he (kt) | gt — 2| dt
k=1 0 0
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1+p/
=MZd,"

Therefore

%
z
k=1

1 P
f by (i £) g(¢ — x) dt
0

is finite almost everywhere. Proceeding as in Theorem 1 we get the required
result.

Theorem 6. In the hypotheses of Theorem 5, if we veplace the conver-
gence of (7) by that of 21 fnﬁ, then (4) holds.

[Added in Proof.] We can show that Theorem 2 is best possible in a
sense, that is, there exists an integrable function f(x) such that it satisfies
the contition of Theorem 2 but its Riemann sum F,(x) diverges almost
everywhere as #— «; for example, we may take as f(x) the series
2+  cos 2 nx/ n* 0<a<1/2).



