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66. Note on Riemann Sum.

By Shin-ichi ]’ZUMI, Tamotsu TSUCHIKURA, and Shigeki YANO.

(Comm. by S. KAKEV., M. . A., Dec. 12, 1946.)

1. Introduction.

B. Jessen has proved the following theorem:
Theorem. Let f(x) be an integrable function in the interzal (0,1) and its

Riemann sum be

F. (x) n=
Then

almost everywhere.
More generally, if nk divides nk+x for any k, then

almost everywhere.

The object of this paper is to prove some related theorems. In Theorem
2 we prove that in Jessen’s theorem we can replace the condition that
divides nk+1 by the Hadarnard condition

(2) + )a) ( , 2, ...)
with an additional condition that

(3) (an log , bs log ; 1, 2, ...)
is a sequence of Fourier coecients of an integrable function, where

1, 2, ...) being that of f(#). This is derived from Theorem 1 as a special

case.
In Theorem 4 we prove that the arithmetic mean o the Riemann sum

almost everywhere under the condition of Theorem 2. This is contained in

Theorem 3.
Finally, in Theorem 5 and 6 we prove I.-analogne of Theorem 1 and 3.
In the proof of these theorems we use the method in the paper "S. Izu-

mi and T. Kawata, Notes on Fourier Series (1): Riemann sum," Proc. Imp.
Acad., 13(1937), which contains some mistakes so that the stated theorem is

not correct.



356 S IzuMI, T. TSUCHIKURA, and S. YANO. [_Vol. 22,

2. Theorems 1 and 2.

Theorem 1. Let (Pn) be a lositive sequence such that (1/p) is convex and

lip,,-, O. Let f (x) be an integrable function in (0,1) and its Fourier series

b

(5) f (,x) a___o + (an cos 2 rrnx + bn sin 2rnx).
2

/f
(6) (anPn, bnl, n 1, 2

is a sequence of Fourier coedents of an integrable function, then (1) holds for
almost all x, where (n ) is taken such as X1/ converges.

For example, if # log n (#> 1), then X 1 # converges when n
[a ] for any a > 1. In Jsen’s theorem a 2, d in our case nk does not

divides n+I in general. As a consequence of Theorem 1, we have

Theorem 2. Let f (x) be an nteable function in (0,1) and its Fourier

series be (5). ff (3) is a sequence Fourier coecients of an integrable func-
tion, then (1) holds for (n ) with the Hadamard condition (2).

We will now prove Theorem 1. By elementy calculation

X (ank cos 2 nk x + bnk sin 2= nkx).

Without loss of geniality we c suppose that a0 0. Hence we have to

prove that Fnk (x) tends to zo almost eye,where.

By the W.H. Young threm

d 2 + X cos2 nx

is a Foxier si of a non-negative inteable fetion, which we denote by

kk (x), where dk is taken eh that
d, /, 1/

is convex d dk tends to zo as k incrs indefinitely.

By e aption there is an inteable function g(x) such that

g(x) X (a.c2= nx + b. sin 2= nx)

Thus we have

(k)g(--) de N (a cos2x + .sin2

d then

Fk (x) f hk (M) g (t--x) dt
do
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almost everywhere.

If g(t) is bounded, then there is an M such as Ig(x) M. Hence

< M’f h (kt) dt

which tends to zero as k .
In the general case, let us put

(t; [g(O > m) (n z, 2, )
whose measure tends to zero as n . Then

Since we can take d 2 p for, k ko, Xd. converge. Therefore we
have

which tends to zo n . Hence thee is a sequence (m) such that

almost evershere, d then, for positive , there is a : such that

most everywhere for all k.
On the other hd

0

CE
where CE denot the complemty set of E. The sond term o the
right hand side tends to zero as k , as was prove. Thus

lim sup h(n 0g(t x) dt N

almost everywhere. Since is bitry, the theorem is prove.
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8. Theorems 8 and 4.

Therem 8. Let (p.) be a $ositive sequence such that , 1/npn converges,
and (1/p.) is .convex. Let f(x)-be an iraegrable function in (0,1) and its Four-
ier series be (5). If (6)is a sequence of Fourier coefficients of an integrable

function, then (4) holds almost everywhere.
For example, if Pn log n (p > 1), then Z: 1 npn converges, and (1 Pn)

is convex. Let f(x) be an integradie function in (0,1). Then we get
Theorem 4. Under the assumtion of Theorem 2, (4) holds almost every-

where.
For the proof of Theorem 3 it is sufficient to prove the convergence of

the sexies

’ F () u.
Now

Fk.(x) [/k hk (kt)g(t-- x)dt

MXdn /nMXl/npn<.oo.
Thus we get the required.

4. Theorems 5 and 6.

Theorem 5. Let (p.) be a positive sequence such as (1/.) is convex and
1/.--, O. Let f(x) be an integrable function in (0,1) and its Fourier series be
(5) and (6) be a sequence o] Fourier coecients of an integrable function in LP
(p> 1), then (1) holds for almost all x, where (nk ) is taken such as

1/pln+t/q (1 p + 1 q 1)

converges.
For the proof we use the notations in the proof of Theorem 1. By the

positiven of hu (0 d the HOlder inequity,

(kt)g(t- x)dt hk (kt)X/a hk (kt)X/g(t- x) dt

hk (kOg(t x) dt dk hk (kt) g (t x) ,_t,
0

=, h,u (nk t) g (t x) at x
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/

Therefore

is finite almost everywhere. Proceeding as in Theorem 1 we get the required

result.
Theorem 6. In the hypotheses of Theorem 5, if we rePlace the conver-

gence of (7) by that of 2 1 [’npn, then (4) holds.
[Added in Proof.] We can show that Theorem 2 is best possible in a

sense, that is, there exists an integrable function f(x) such that it satisfies
the contition of Theorem 2 but its Riemann sum Fn(x) diverges almost
everywhere as n- o; for example, we may take as f(x)the series

2 + Z cos 2
=1


