66. Note on Riemann Sum.

By Shin-ichi Izumi, Tamotsu Tsuchikura, and Shigeki Yano.
(Comm. by S. Kakeya, m.1. A., Dec. 12, 1946.)

1. Introduction.

B. Jessen has proved the following theorem:

Theorem. Let $f(x)$ be an integrable function in the interval $(0,1)$ and its Riemann sum be

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right) .
$$

Then

$$
F_{2^{n}}(x) \rightarrow \int_{0}^{1} f(t) d t
$$

almost everywhere.
More generally, if n_{k} divides n_{k+1} for any k, then

$$
\begin{equation*}
F_{n_{k}}(x) \rightarrow \int_{0}^{1} f(t) d t \tag{1}
\end{equation*}
$$

almost everywhere.
The object of this paper is to prove some related theorems. In Theorem 2 we prove that in Jessen's theorem we can replace the condition that n_{k} divides n_{k+1} by the Hadamard condition

$$
\begin{equation*}
n_{k+1} / n_{k}>a>1(k=1,2, \ldots) \tag{2}
\end{equation*}
$$

with an additional condition that

$$
\begin{equation*}
\left(a_{n} \log n, b_{n} \log n ; n=1,2, \ldots\right) \tag{3}
\end{equation*}
$$

is a sequence of Fourier coefficients of an integrable function, where (a_{n}, b_{n}; $n=1,2, \ldots$) being that of $f(x)$. This is derived from Theorem 1 as a special case.

In Theorem 4 we prove that the arithmetic mean of the Riemann sum

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} F_{k}(x) \rightarrow \int_{0}^{1} f(t) d t \tag{4}
\end{equation*}
$$

almost everywhere under the condition of Theorem 2. This is contained in Theorem 3.

Finally, in Theorem 5 and 6 we prove L^{p}-analogue of Theorem 1 and 3.
In the proof of these theorems we use the method in the paper " S . Izumi and T. Kawata, Notes on Fourier Series (1): Riemann sum," Proc. Imp. Acad., 13(1937), which contains some mistakes so that the stated theorem is not correct.

2. Theorems 1 and 2.

Theorem 1. Let $\left(p_{n}\right)$ be a positive sequence such that $\left(1 / p_{n}\right)$ is convex and $1 / p_{n} \rightarrow 0$. Let $f(x)$ be an integrable function in $(0,1)$ and its Fourier series $b e$

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x\right) \tag{5}
\end{equation*}
$$

If

$$
\begin{equation*}
\left(a_{n} p_{n}, b_{n} p_{n} ; n=1,2, \ldots \ldots\right) \tag{6}
\end{equation*}
$$

is a sequence of Fourier coefficients of an integrable function, then (1) holds for almost all x, where $\left(n_{k}\right)$ is taken such as $\Sigma 1 / p_{n_{k}}$ converges.

For example, if $p_{n} \equiv \log ^{p} n(p>1)$, then $\Sigma 1 / p_{n_{k}}$ converges when $n_{k}=$ [a^{k}] for any $a>1$. In Jessen's theorem $a=2$, and in our case n_{k} does not divides n_{k+1} in general. As a consequence of Theorem 1, we have

Theorem 2. Let $f(x)$ be an ntegrable function in $(0,1)$ and its Fouriev series be (5). If (3) is a sequence of Fourier coefficients of an integrable function, then (1) holds for (n_{k}) with the Hadamard condition (2).

We will now prove Theorem 1. By elementary calculation

$$
\begin{aligned}
F_{k}(x) & =\frac{1}{k}^{k-1} f(x+\nu / k) \\
& \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n k} \cos 2 \pi n k x+b_{n k} \sin 2 \pi n k x\right)
\end{aligned}
$$

Without loss of generality we can suppose that $a_{0}=0$. Hence we have to prove that $F_{n_{k}}(x)$ tends to zero almost everywhere.

By the W.H. Young theorem

$$
d_{k} / 2+\sum_{n=1}^{\infty} \cos 2 \pi n x / p_{n_{k}}
$$

is a Fourier series of a non-negative integrable function, which we denote by $h_{k}(x)$, where d_{k} is taken such that

$$
d_{k}, \quad 1 / p_{k}, \quad 1 / p_{2 k}
$$

is convex and d_{k} tends to zero as k increases indefinitely.
By the assumption there is an integrable function $g(x)$ such that

$$
g(x) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x\right) p_{n}
$$

Thus we have

$$
\int_{0}^{1} h_{k}(k t) g(t-x) d t \sim \sum_{n=1}^{\infty}\left(a_{n k} \cos 2 \pi n k x+b_{n k} \sin 2 \pi n k x\right)
$$

and then

$$
F_{k}(x)=\int_{0}^{1} h_{k}(k t) g(t-x) d t
$$

almost everywhere.
If $g(t)$ is bounded, then there is an M such as $|g(x)| \leqq M$. Hence

$$
\begin{aligned}
{\left[\int_{0}^{1} h_{k}(k t) g(t-x) d t \mid\right.} & \leqq \int_{0}^{1} h_{k}(k t) g(t-x) d t \\
& \leqq M \int_{0}^{1} h_{k}(k t) d t \\
& \leqq \frac{M}{k} \int_{0}^{k} h_{k}(t) d t=M \int_{0}^{1} h_{k}(t) d t=d_{k} M,
\end{aligned}
$$

which tends to zero as $k \rightarrow \infty$.
In the general case, let us put

$$
E_{m} \equiv(t ;|g(t)|>m)(n=1,2, \ldots \ldots)
$$

whose measure tends to zero as $n \rightarrow \infty$. Then

$$
\begin{array}{r}
\int_{0}^{1}\left|\int_{E_{m}} h_{k}(k(t+x)) g(t) d t\right| d x \leqq \int_{0}^{1} d x \int_{E_{m}} h_{k}(k(t+x))|g(t)| d t \\
=\int_{E_{m}} g(t)\left|d t \int_{0}^{1} h_{k}(k(t+x)) d x=d_{k} \int_{E_{m}}\right| g(t) \mid d t
\end{array}
$$

Since we can take $d_{k} \leqq 2 / p_{k}$ for, $k \geqq k_{0}, \sum d_{n_{k}}$ converges. Therefore we have

$$
\int_{0}^{1}\left\{\sum_{k=1}^{\infty}\left|\int h_{E_{m}} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right|\right\} d x \leqq\left(\sum_{k=1}^{\infty} d_{n_{k}}\right) \int_{E_{m}} g(t) \mid d t
$$

which tends to zero as $n \rightarrow \infty$. Hence there is a sequence (m_{ν}) such that

$$
\lim _{\nu \rightarrow \infty} \sum_{k=1}^{\infty}\left|\int_{E_{m_{\nu}}} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right|=0
$$

almost everywhere, and then, for any positive ε, there is a μ such that

$$
\left|\int_{E_{m_{\mu}}} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right|<\varepsilon
$$

almost everywhere for all k.
On the other hand

$$
\begin{aligned}
& \int_{0}^{1} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t=\int_{E_{m_{\mu}}}^{h_{n_{k}}}\left(n_{k} t\right) g(t-x) d t \\
&+\int_{C E_{m_{\mu}}} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t
\end{aligned}
$$

where $C E$ denotes the complementary set of E. The second term of the right hand side tends to zero as $k \rightarrow \infty$, as was proved. Thus

$$
\lim \sup \left|\int_{0}^{1} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right| \leqq \varepsilon
$$

almost everywhere. Since ε is arbitrary, the theorem is proved.

3. Theorems 3 and 4.

Therem 3. Let $\left(p_{n}\right)$ be a positive sequence such that $\Sigma 1 / n p_{n}$ converges, and $\left(1 / p_{n}\right)$ is convex. Let $f(x)$.be an integrable function in $(0,1)$ and its Fourier series be (5). If (6) is a sequence of Fourier coefficients of an integrable function, then (4) holds almost everywhere.

For example, if $p_{n}=\log ^{p} n(p>1)$, then $\Sigma 1 / n p_{n}$ converges, and $\left(1 / p_{n}\right)$ is convex. Let $f(x)$ be an integradie function in (0,1). Then we get

Theorem 4. Under the assumtion of Theorem 2, (4) holds almost everywhere.

For the proof of Theorem 3 it is sufficient to prove the convergence of the series

$$
\sum_{k=1}^{\infty} F_{k}(x) / k
$$

Now

$$
\begin{aligned}
\Sigma\left|F_{k}(x)\right| / k & =\Sigma \frac{1}{k}\left|\int_{0}^{1} h_{k}(k t) g(t-x) d t\right| \\
& \leqq M \Sigma d_{n} \mid n \leqq M \Sigma 1 / n p_{n}<\infty .
\end{aligned}
$$

Thus we get the required.

4. Theorems 5 and 6.

Theorem 5. Let $\left(p_{n}\right)$ be a positive sequence such as $\left(1 / p_{n}\right)$ is convex and $1 / p_{n} \rightarrow 0$. Let $f(x)$ be an integrable function in (0,1) and its Fourier series be (5) and (6) be a sequence of Fourier coefficients of an integrable function in L^{p} ($p>1$), then (1) holds for almost all x, where $\left(n_{k}\right)$ is taken such as

$$
\Sigma 1 / p_{n_{k}}^{1+p / q} \quad(1 / p+1 / q=1)
$$

converges.
For the proof we use the notations in the proof of Theorem 1. By the positiveness of $h_{k}(t)$ and the Hölder inequality,

$$
\begin{aligned}
& \begin{aligned}
&\left|\int_{0}^{1} h_{k}(k t) g(t-x) d t\right| \leqq\left|\int_{0}^{1} h_{k}(k t)^{1 / q} h_{k}(k t)^{1 / p} g(t-x) d t\right| \\
& \geqq\left(\int_{0}^{1} h_{k}(k t) d t\right)^{1 / q}\left(\int_{0}^{1} h_{k}(k t)|g(t-x)|^{p} d t\right)^{1 / p} \\
&\left|\int_{0}^{1} h_{k}(k t) g(t-x) d t\right| p \leqq d_{k}^{p / q} \int_{0}^{1} h_{k}(k t)|g(t-x)|^{p} d t, \\
& \sum_{k=1}^{\infty} \int_{0}^{1} \mid\left.\int_{0}^{1} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right|^{p} d x \\
&=\sum_{k=1}^{\infty} d_{n_{k}}^{p / q} \int_{0}^{1} d x \int_{0}^{1} h_{k}(k t)|g(t-x)|^{p} d t
\end{aligned} .
\end{aligned}
$$

$$
\leqq M \Sigma \stackrel{1}{d_{n_{k}} . p / q}
$$

Therefore

$$
\sum_{k=1}^{\infty}\left|\int_{0}^{1} h_{n_{k}}\left(n_{k} t\right) g(t-x) d t\right|^{p}
$$

is finite almost everywhere. Proceeding as in Theorem 1 we get the required result.

Theorem 6. In the hypotheses of Theorem 5, if we replace the convergence of (7) by that of $\Sigma 1 / n p_{n}^{p}$, then (4) holds.
[Added in Proof.] We can show that Theorem 2 is best possible in a sense, that is, there exists an integrable function $f(x)$ such that it satisfies the contition of Theorem 2 but its Riemann sum $F_{n}(x)$ diverges almost everywhere as $n \rightarrow \infty$; for example, we may take as $f(x)$ the series $2+\sum_{n=1}^{\infty} \cos 2 \pi n x / n^{a}(0<\alpha<1 / 2)$.

