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62. Note on Irreducible Rings.

By Tadasi NAKAYAMA.
Department of Mathematics, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.I A., Dec. 12, 1946.)

The purpose of the present work() is to extend, partly, the well-known
beautiful theory of simple algebras and their relationship with subalgebras®@
to irreduciblé rings; A ring we call irreducible, or right-irreducible to be pre-
cise, when it has a faithful irreducible right-module. More generally we call
a ring (7ight-)semi-irreducible, when it has a faithful completely redicible
right-module.® If an (irreducible) ring possesses a faithful irreducible right-
ideal, then we speak of a (vight-) ideal-irreducible ring. A closed (vight-) irre-
ducible ring is defined as a ring R possessing a faithful irreducible right-
module m with R-endomorphism ring R*, such that every R*-endomorphism
of m is induced by R. Similarly defined are (right-) ideal-semi-irveducible and
closed (right-) irveducible rings.

Let R be a (vight-) ideal-semi-irreducible ring, vy a faithful completely re-
ducible right-ideal in ®. Take one representative from each class of mutual-
ly isomorphic irreducible right subideals of r;, The (restricted direct) sum
vy of the tatality of such vepresentatives is also a faithful completely reducible
right ideal. Now we have:

Every faithful right-module of R possesses a submodule isomorphic to v,.
In particular, v, is @ minimal faithful right ideal in K. Every non-zero vight-
ideal of R contains an irveducible vight subideal, which is isomorphic with an
trreducible component of vo. A rvight-ideal of R is irveducible if and only if it
is generated by a primitive idempotent element. The sum of all (irreducible)
vight-ideals isomovphic with an irreducible right-ideal is an irveducible two-
sided ideal, and every irreducible two-sided ideal is obtained in such manner.
Every non-zero two-sided ideal contains an irreducible two-sided ideal. The
(restricted direct) sum of all irreducible two-sided ideal, that is, the largest
completely reducible two-sided ideal in R, is the smallest vight{as well as two-

(1) A fuller account is given in a forthcoming joint paper by G. Azumaya andsthe
writer.,

(2) Of R. Brauer, E. Noether and A. A. Albert, among others.

(8) For C. Chevalley’s principal theorem of semi-irreducible ring, in the effect to
embed a semi-irreducible ring densely in a closed one (in the sense of the weak topology
of mappings in the (discrete) module, see T. Nakayama, Ueber einfache distributive Sys-
teme unendlicher Ringe, these Proc. 20 (1944), Anhang.
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sided) faithful two-sided ideal, and is by itself an ideal-iemi-ivreducible ring.
In the particular case of (ideal-) irreducible R this last is the smallest (non-
zero) two-sided ideal.

To prove these, let first m be an arbitrary faithful right-module of R,
and $ an irreducible subideal of ¥;, Then ms=£0, whenee us-+0 with an ele-
ment % in m, and this non-zero submodule of M is isomorphic with 8. The
sum of such irreducible submoduli, 8 running over all irreducible components
in vy, forms a submodule of m isoraorphic with v,. Let t be a second irre-
ducible component of t,, different from s. Then ts = 0, since it is contained
in t and is, on the other hand, a sum of subideals isomorphic to s. Then
s = 8, because if 82 = 0 we would have t¢8 = 0. That (the idempotent irre-
ducible rightideal) s is generated by a primitive idempotent element can be
seen as usual. The sum 3¢ of all rightideals isomorphic to s is a two sided
ideal, and in fact s = s, since every rightideal isomorphic to s has a form
as (aeR). R=£0 for every ¢ 0 from 3g; observe that the left annihilator
of R in 3 is a right (in fact, two sided) ideal, which would contain a subi-
deal isomorphic with s if #%0. So RcR = 3, which proves the two-sided
irreducibility of 3s. 3 = R, is the sum of all such #’s, and #s, 3 with non-
isomorphic 8, t are orthogonal. Let a be a nonzero two sided ideal in R. 3
=NRega=r2a =ra+0 Thus Rrya is, as a non zero two-sided subideal of
3, a non-void sum of certain sg’s. As Rty a = a, we conclude that a contains
at least one 3g. It follows then that 3 is (not only right, but also) left faith-
ful; for, if the left annihilator of 3 which is a twosided ideal, were non-
zero then it would contain a certain 3, contrary to 3s3 = 3¢ 0. Consider
then an arbitrary non zero rightideal r. t3 £ 0, whence v3g # 0 with a certain
3s, U contdins then a subideal isomorphic with s. Now, a right principal i-
deal generated by a primitive idempotent is then. irreducible, since every non-
zero right ideal contains an irreducible subideal.

Further, a rightideal- (semi-) irreducible ring is always left-ideal (semi-)
irveducible too.» Namely, a left ideal Re generated by a primitive idempot-
ent e is also irreducible, because a left ideal Ra contains a non-zero idempo-
tent if and only if a® contains a euch; The e istence of an x with xax = x
is necessary and sufficient for both. Take ¢ from each of mutually non-iso-
mophic irreducible right-ideals s. Then the (restricted direct) sum of Re’s is
a faithful completely reducible left ideal.

A quasifield & inverse-isomorphi¢c to the endomorphism quasifield & of
an up to isomorphism unique faithful irreducible right-module m of an ideal-

(4) The irreducible case was communicated to me by G. Azumaya.
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irreducible ring R is said to belong to R. The rank of m over & is called
the dimension of %, and is denoted by [R] A closed {right-) irreducible ring
is ideal-irreducible, and is nothing but the full row-finite [R}-dimensional
matric ring over its quasifield & Its automorhism-class-group is isomorphic
with that of the quasifield K. Further, a closed semi-irreducible ring is a
complete (=non-restricted) direct sum of mutually orthogonal closed irreduc-
ible subrings, corresponding to nonisomorphic irreducible components (or,
what is the same, corresponding to components in the ideal-decomposition)
of the faithful completely reducible right-module. So, in the sequel we shall
rather restrict ourselves to the irreducible case, as is usually done in the
theory of semi'simple algebras also, for the sake of simplicity.

Let R be a closed irreducible ring with center Z, and & be a (nonnilpotent)
simple algebra (= hypercomplex ving of a finite vank) over Z. The direct pro-
duct R x © over Z is a closed irrveducible ring with quasifield isomorphic to
that belonging to the simple ving (with chain condition) K x &, where | de-
notes the quasiffeld belonging to K. If 3 is the smallest two-sided ideal of R,
then g x © is that of ® x &, (If R is, generally, a general irreducib.e ring,
we may embed it into its closure with respect to a faithful irreducible right-
module and thus construct its direct product with a hypercomplex system o-
ver the center of its closure. The direct product of ® with a simple algebra
is then irreducible. If R is idealdirreducible, so is the product and the above
assertion concerning smallest two-sided ideals remains valid too.)

Let in particular R be a simple subring of (the closed irreducible ring) R
containing Z and of finite vank over Z. The commuter ring Vig'®) of & in R
is a closed irveducible ring and the quasiffeld- belonging to it is isomorphic
with that belonging to the dirvect product R x & (over Z), wheve & is an alge-
bra inverse-isomorphic to . The commuler ving of Vg'®) coincides with &;
VR(VR(®))= 6. &-_Vx(®) is the common center of & and Vg(®), and the
product GVR(®) in R is direct over it. Moreover this closed irreducible ving
BV&(B) is the commuter ving of @~ Vg(®) in R, and its smallest two-sided i-
deal is the (direct) product of that of V(®) with &. (If in particular B is
normal over Z then R = & x Vy(©).) Every isomorphism of R (with a second
simple algebra) in = leaving Z elementwise fixed can be extended to an inney
automorphism of R.

Now, let there be given a finite subgroup ® = {E, S, ..., T} of the auto-
morphism-class-group of R, and let for every Se® a class representative S
be given. A set of ()2 regular elements as.r of R is called a factor set
(belonging to ® and to the system {S}) when
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i) 23T = a5l x5Tas, v (xeR; S, Teb),

i) er srast=ars rak, (R, S, Te®.
With a factor set we can introduce a crossed product
R, 8) = Rue + Rus+ ... + Rur

in the usual manner, and this is an ideal-ivveducible ring with the smallest
two-sided ideal (3, ®), 3 being such in R. If in particular G is a finite group
of outer automorphisms of R, the crossed product (R, G) with unit factor set {1}
is not only ideal-irreducible but closed. And with its aid we can derive the
following Galois theorem.®

The invariant system W of G in R is a closed irrveducible ring, and G ex-
hausts automorphisms of R leaving W elementwise fixed. R has a linearly n-
dependent right-basis over W consisting of (G) terms; in fact it has a normal
right-basis over W® Every closed irreducible subring of R containing W is the
invariant system of a suitable subgroup of G. Thus the closed irreducible vings
between W and R corvespond 1-1 to the subgroups of G. The commuter ving
of W in R is identical with the center Z of R, and the center K of W 1s the
invariant system of G in Z. The product WZ in R is divect over K, and the
subgroup of G belonging to it consists of all elements in G leaving Z element-
wise invariant. R can be expressed as a rowfinite full matric ving with G-
tnvariant matric units over a simple ring with chain condition Ro, so that G
may be looked upon as a group of outer automorphisms of Ro, and the invari-
ant system Wy of G in Ry is a quasifield. W is the matric rving over Wy with
the same system of matric units, and closed irreducible vings between R, U
corvespond I-1 to those (which are simple rings with chain condition) between
Ro, Wy, the between-rings mutually corresponding belong to one and the same
subgroup of G. Thus the Galois theory of RN is veduced to that of Ry/U,.

These all may be shown in more or less similar manner as the well-estab-
lished case of simple algebras (or of simple rings with chain condition).
Particularly suited is an approach by G. Azumaya,” to whom also the pres-

(5) See N. Jacobson, The fundamental theorem of Galois theory for quasi-fields,
An. Math. 41 (1940). Its extension to simple rings with chain condition, together with
some refinements, has been given by 'G. Azumaya; see Azumaya, New foundation for
the theory of simple rings, forthcoming in these Proc.

(6) Cf. Nakayama, Normal basis of a quasi-field, these Proc. 16 (1940).

(7) See Azumaya. . c. 5). Its main feature is to embed the ring in the absolute
endomorphism ring of its (faithful) right-module. It resembles thus with the methods
of R. Brauer-H. Weyl and A. A. Albert, at least in the case of algebras, but is much
smarter and directer.

Theorems 1, 2 in Azumaya’s paper may be also transferred to close irreducible rings.
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ent work owes much; his attendance, as well as his intervention and ciritic-
ism, at the writer’s lectures during the winter 1944-45, in which the most
part of the present work was expounded, were so valuable and the writer
wants to express here his best thanks to him.

Added in proof : The paper, On irreducible rings, referred to in (1) has
appeared in Ann, Math, 48 (1947). Irreducible rings are called primitive rings
in a paper by Jacobson appeared shortly before this joint paper byAzumaya
and the writer; N. Jacobson, On the theory of primitive rings, Ann. Math.
48 (1947).

Meanwhile many papers have been made accessible to the writer which
ought to have been referred to if had been known to him. Let the follow-
ing two be particularly mentioned: E. Artin-G. Whaples, The theory of simple
rings, Amer. J. Math. 65 (1943); N. Jacobson, Structure theory of simple
rings without finiteness assumptions, Trans. Amer. Math. Soc. 57 (1945). The
paper of Artin and Whaples is closely related to Azumaya’s in (5), while in
Jacobson’s paper Chevalley’s theorem, referred to in (3), was obtained inde
pendently.



