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O. Introduction. Recently I. Gelfand and D. Raikov [3j) have
established an elegant theory of unitary representations of locally

compact groups, which may be considered to correspond o Peter-
Weyl’s theory on compact groups. On the other hand, Peer-Weyl’s

theory was exended o the theory of harmonics on compact homo-
geneous spaces by H. Weyl [1] and E. Cartan [2]. The purpose of

the present paper is o give a similar extension o Gelfand-Raikov’s
theory-.

Let I2 be a homogeneous space with a locally compact group G
of homeomorphisms. We always assume the following condition"

If po is any fixed point of 12, then the subgroup H {a; a (7,(*)
Po = To} of G is compact.

In 1 of the present paper, we introduce some preliminary

notions. In 2, we discuss the correspondence between positive

definite functions on/2"- and cyclic unitary representations, and show

that so-called extreme positive definite functions correspond to irredu-

cible unitary representations. We establish in 3, the theorem

concerning the topologies in the set of positive definite functions

on 2, and in 4, the theorems of approximation of so-called in-

variant continuous functions on 12 by means of linear combinations
of elementary positive definite functions and the existence of suffici-
ently many irreducible unitary representations.

The author expresses his hearty hanks to Professor K. Yosida,
who has suggested him he problem and encouraged him wih kind

discussions, and to Mr. K. Nomizu, who has read he manuscript,

and suggested that the proofs of Theorems 9 and 10 ( 4) may be

1) Number in Literature at the end of this paper.
2) It is impossible for the present author to read the paper [3], but the papers on

the same subject by R. God[ement [4] and by H. Yoshizawa [5] have become avail-
able to him.
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reduced to the case of groups; the author’s original proofs were
more complicated.

1. Preliminaries. Let /2 be a homogeneous space with a

transitive locally compact group G of homeomorphisms. We shall
denote the points, of /2 by p, q, s,,t, and the elements of G by

r, especially the unit element by e. Fix a point p e/2, and assume
that (*) the subgroup H--- {; rpo----po} of G is compact. We shall
consider a fixed triple {9, G, p0} and denote by H the set {p; P,po

and by p any element of H; we easily see that

(1,1) Ho =H for any G:
For any K<_G and A___;), we shall denote by KA the set {p
treK, pA} (9).

Let {V;aA.} be a com]ete system of conditionally compact
neghbourhoods of e. Then the system {Vp;pi2, aeA} gives a

uniform stsucture (see [7]) n 9. We can consider fhat /2 G/H
and they a.re locally compact uniform spaces; then we can define a

lef-invariant Haar measure on G, and that on H such as the total

measure of H is equal to one, and also a G-invariant measure on

(see [8] p. 10 and pp. 42-45) and we consider the product measur on
/2"=/2/2. We shall use the notations L(G), Lv(;2)and
(1 p

_
oo) as usual.

Definttion 1. A triple {(C), U(e), } of a Hilbert space @, a

.group {U()} of unitary op,erators on @ and a point e@, is called a
unitary representation (abbreviated to u-representation) of {/2, G, p0}’
if f.here exist

i) a strongly continuous mapping (p-)from the space

into the sphere {$ !1 $ i] = }’ in @ (: positive constant) such
that p0 - and

ii) a strongly continuous homomorphic mapping (e- U(e)) from
the group G onto the group {U()} such that U() ’ for any

G, p/2.

A representation {, U(), } is sad o be cyclid ff {U(p);
pe2} spns , and to be irreducible if there exist no U()-invariant
proper subspace in (C).

3) I} !! and (,,.) denote respectively the norm and the inner product in the Hil-
bert space .

4) It is called simple in [4] and [5], we call it cyclic following after Gelfand and
Raikov.
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Definition 2. A complex valued measurable function h(p, q) on

/22 is called to be invariant, if it satisfies the condition"

(1,2) h(rp, rq) h(p, q) for almost all.(p, q) /J and any a.G.
We shall denote by J the totality of invariant functions.

Definition 3. A complex valued function f(p, q) on g2 is called

positive definite (abbreviated to p.d.), if feL(9) and satisfies the

conditions (1, 2) and

(1,3) f(p,q)x(p)x(q)dpdqO for any xL().

We denote by P the totality of p.d. functions on 92.

Corollary. If f(p, q) P is continuous on , the condition (1,3)

is equivalent with the following one"

,a’) f(p , o

for any vomplex numbers a, a,, and arbitrary p, p, and

we have

(1,4) f(p, p) O, f(p, q) f(q, p) and [tip, q)[ f(, p),

where f(p, p) is independent of p (by (1,2)).
The equivalence of (1,3) and (1,3) is obtained by the same way

as in [SJ pp. 55-57 and (1,4) is easily obtained from (1,3).
The following Lemma 1 and Theorem 1, which may be proved

easily, give important examples of p. d. functions"

Lemma 1. For any $(a)eL(G), the function

is a continuous’ p. d. function on .
Theorcm 1. If {, U(a), i a u-representation of {, G, To}, then

f(p,q) =(U(), U(q))(, 5) is a continuous p.d. function
on .

If $(z)L(G), then $(a)da depends only on p and is inde-
pendent of special p,H, and we have

(see [8], pp. 43-45). For any function x(p) on 9 we can define a

function Q(z) on G by Q(a)= x(o); then $.(,)= x(p) for any

5) The right side of (1,5) depends only on p and q, and is independent of special
,eHq, and qettq, by the left-invarianee of the Haar measure on H.
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pH’. From (1,,6) and the fact that the total measure of Hequals

one, it is easy to show that

Lemma. 2. Foreve.ry(r)eL(G), the/unction

belongs to L*(12) conversely, ]br every x(p)L(, the function
5() xCpo)

belongs to L(G) and x(p) = x(p).
Now we shall prove the following

Lemma 3. In order that an invariant function tip, q) be p. d.,
it is necessary and sucient that the function ()flapo, po) is a

p.d. function on G (see [5] 3).

Proof. From (1,6) and mma 2, we have the following two
relations, from which this lemma is deduced at once: for any

(1,7)

af(P, q)xa(px(qldpdq;

and conversely for any x(p)eL()

= ,,,(r-’a).(a)e.(r)dadr (from (1,7).)

2. Positive definite functions and cycl unitary representions.

Theorem 1 ( 1) and the following two heorems show the corres-
pondence between p.d. functions on and cyclic u-representations

of {9, G, p0}. It is easy o show

Theorem 2. If {, U(a), } and {,’, U’(a), ’} are cyclic u-repre.
sentatns and

(U(), u(,))= U’(,)’, u’()’)for a <p, q),e ,
then the above tmo repsentations a mutually uniy uivalent.
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We shall prove the following

Theorem 3. For every p. d. function f(p, q) on , there exists

a cyclic u-representation {, U(a), } such that

f(p, q) (U(p, U(pq)) for almost every (p, q) 12.
Proof. Since a) --f(po, po) is a p.d. function on G (by Lemma

3), ,there exists a cyclic u-represen.tation {..U(a), } of the group

G (see 3 and 4 of [5]) such that

q(a) (U(a), 0 for almost every ,G.

Hence, by the relation between the measure on /2 and that on G
(see 1--and [8] p. 45), we have

f(p, q) q(,,-) = (U(,,’-,e,), )
. (U(p)., U(pq)O for almost every (p, q)e..

In order to show that U(p,)C depends only on p and is i,ndependen

of special p,H, it is sufficient to prov,e that eH implies U(r) .
Since rH implies rp0 := po, we have

(U(.)’, U(r)’) =f(*p0, rpo) =f(apo, po)= (U(.)’, )

for any aeG, reH; then since {U(),(; teG} spans )), we have
U(r)( (; and {U()(; pe2} spans , as every aeG belongs to a
certain H.

Therefore we can put U(p)( , then

U()( U()U(p)C U(po)( (o, (by (I,I)).

We shall now show that the mapping p-, is strongly continuous.

For any pe.q and any e>0, there exists a neighbourhood V of e

such that V implies [:IU()--[I ) then for any .q Vp, we

can write q ap (aeV) and consequently (, U(po)C U(a)C;
hence qVp implies

By the definition of the mapping p-*’, it is clear that po

corresponds to and that ii,II--IIll /ess. sup i(a)l for any

any p e2. Thus, {, U(a), ’} satisfies all conditions in Definition

1 ;--Theorem 3 has been proved.

6) See Theorem 3 in [5].



Corollary. Every p. d. fienction on 12 coincides with a continuous

one amost everywhere in .
Denote by E0 the totality of functions .z(p, q) on /2 of. the form

z(p, q)----x(p)x(q); xU(12), and E--the real closed linear envelope

of Eo with respect to the norm I1" It in L(B). Then E is a real

Banach space and, as will easily be proved, P .is a weakly closed
subset of the rea conjugate space E* of E. Then, by the above
Corollary, we can assume that every fP is continuous and [tip, q)i
__lifl[o =f(po,.po) (by Corollary of Definition 3).

Now Po {f; fa P, [Ifl]- <: 1} is a bounded, convex and weakly

closed subset of E*. Hence accordiug to the theorem by M. Krein
and D. Milman (for example, see [4] 13), every faPo is weakly

approximated by convex combinations of extreme ones, where an ex-

treme point means such a point of Po that is not an inner point of the
segment combining any pair of two points of P0. It is easy to see
that every extreme fa P0 is of norm one, except the zero element.

We establish in Theorems 4 and 5 the correspondence between
irreducible u-representations and extreme p.d. functions.

Theorem 4. If {, U((r), } is an irreducible u-representation

and lll 1, then f(p, q)--(U(p), U(p,)) is an extreme p.d.

function.
Proof. Suppose that

f(p, q) f(p, q)+f(p, q)

then t() = f(apo, po) f(apo,. po) +(rpo, po) q () +q().
Since {, U(a), is the u-representation of G corresponding to pt

in the sence of 4 of [5] (see the proof of Theorem 3 in the present

paper) and is irreducible, we can write by Theorem. 4 of [5] that

(see also Lemma 3). Hence

(p, q) Rf(p, q), f(p, q) (1--R)f(p, q); 0 < R < 1, q. e. d.

Theorem 5. If (5, U(a), } ([1 [[ 1) is a cyclic u-representation

and f(p, q) (U(p), U(pq)) is an extreme p. d. function in P,, then

{, U(r), } is irreducible.

Proof. If there exists a projection P in @ which commutes

with every U(a), then
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f(p, q) (U(p,), U(pa))
(U(p,)PG U(p,)P)+(U(p,)(I--P), U(p,)(I--P)).

and f(p, q) (U(p,)PG U(&)P) and f2(p, q)
(I-P)) are also p.d. functions. Since f(p, q) is extreme, it follows
that

(PU()G U(,)C) (U)PG U(&)P) (U()G U(,)C); and
since U(); pY2 spans , we have P I; hence ---0 or 1,
as P is a projection, q. e. d.

Definition 4. A function feP is called elementary, if the corres-
pOnding u-representation is irreducible and llfl!--1.

Then the following theorem is evident by Theorem 5 and the

theorem by M. Krein and D. Milman"

Theorem 6. Every f(p, q) P0 is appro.imated weakly ’(in E*) by

convex combinations of elementary p.d. functions.
3. The weak convergence and the uni/brm convergence of p. d.

functions. In this paragraph, we shall show the equivalence of the
two convergence in the set P. {f; faP, Ilfl[-f(po, po) 1}, i.e.

the equivalence of weak convergence in E* and the uniform con-

vergence on any compact subset of . Concerning the set H of

p.d. functions () on G such that q(e)--1, the equivalence of the

weak convergence in L(G)* and the uniform convergence on any

compact subset of G is already established (for example, see [6]),
and q(a)---f(ap0, po) belongs to H if and only if feP. To the

purpose of this paragraph, therefore, it is sufficient to .show the
following two lemmas.

Lemma 4. It is necessary and sudYicient for f(p, q) P to converge

to fo(p, q)eP weakly in E*, that q(r) converges to () weakly in

L(G)*.

Proof. We define .(), *()(G L(G)) and the approximate

identity {e()} of L(G) as in [5]). Then by the properties

limlle*.--]]--0 (11"11 denote the norm in L(G)),

4,*.$ ($+,)*.(+@-(-,)*.(-,)
+i(+ i,)*. (+ i,)--i(--i,)*. (--i,)

7) $.(a)= $(r)(r-16dr; $*(6)-$(-l)d(a), where d() is the density of right-

invariant Haar measure with respect to left-invariant Haar measure
()/z(V), where Cra(p) denotes the characteristic function of
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and

Iaz()*.()d = (-)()(’)drd"

for $, e U(G), the condition that (ir) converges to 0(a) weakly in
L(G)*, is equivalent with the following one: for any $L(G),

i iq(r-.)$(.)’(r)dadr converges to i i0(-’a)$(a)-dadr. Hence

this lemma is clear, from Lemmas 2 and 3 (see (1,7) and 1,8)).
Lemma 5. It is necessary and sufficient for h(p, q) J to converge

to ho(p, q)J uniformly on any compact subse$ of 122, that q(a) con-

verges to qo(r) uniformly on any compact subset of G (For the later
application we show this lemma for functions eJ(P) instead of P).

Proof. i) Suppose that h J converge to h0 J uniformly on any

compact subset of Y2*. Then for any compact set KG, the set
F----{p0; eK}Y2 and consequently the set /---{(p,
p eF} 9* is compact hence, if h(p, q)--ho(p, q) e on " for

e0, then

(a)--o(a)i =ffi h(apo, po)--h0(aPo, o) l for any aK.

ii) Conversely, suppose that , converge to q,o (h, hoe J) uniformly
on any compact subset of G. For arly compact set F 2*, there exist

compact sets F, F2 g2 such that/" F F(/2’) since H is com-
pact, the sets

K-- UH. and K2-- UHq

are compact, and consequently K2-K also is compact. Then since

(p, q) e F implies q-ee K,-K, it follows that ],(a) -o(a)] on

K.-K implies

]h(p, q)--ho(p, q) ---- e(P.-P,)--o(Pq-, e for any (p, q) F,
q.e.d.

Thus we obtain the following

Theorem 7. In order that fP converge to foe P uniformly on

any compact subset of 12, it is necessary and su.icient that f converges

to fo weakly in E*.
4. Theorems of approximation. By Theorems 6 and 7, it is

immediately obtained that
Theorem 8. Every. p.d. functions) on 2 is approximated, uni-

8) In this paragraph too, we consider only continuous p. d. functions.
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formly on any compac subset o,f , by linear combinations with

positive coefficients of elementary p. d. functions.
We shall denot by F the totality of functions on G which are

constant on every coset H( G/H) (i. e. every (a)F is considered as

a function on G/H). Then,

Lemma 6. For any p. d. function q(a)e F, there exists a p. d.

function tip, q) on 12 such that q() qt()--’--f(rpo po).

Proof. There exists a cyclic u-representation {, U(a), } of

the group G (see 3 and 4 of [5]) such that p() (U(a)C, ). Since

a2(a) e F, (U(r), ) q(r) (e) (, C) for any r H; hence

(u()-z, u()z-) o (from I1 ()Z!l [l !!), i.e. ()Z Z.
Therefore we can show, as in the proof of Theorem 3, that {(C), U(a),}
is a u-representation of {I2, G, po}. Then

f(p, q) (U(p), U(pq))(,

is a p.d. function on /2* (Theorem 1), and

q(a) (U(a), ) (’oro, ) f(aPo, Po), q.e.d.

Theorem 9. Every invariant continuous function on f2 is approxi-

mated, uni)brmly on any compact subset of 9, by linear combinations

of elementary p. d. functions.
Proof. For any invariant continuous function h(p, q), the function

q(a)--h(rpo, p) is approximated by linear combinations of p.d.

functions on G, uniformly on any compact, subset of G (see [3] or

[4]) for any compact set K G and any e > 0, there exists a linear

eombinatiorl @(a) of p.d. funetiofis on G such that ()--()! e

for pHKH(HKH is compact as well as H and K). Then since

q,() h(po, po) h(apo, rp0) q(r-pa) for any a, r H, we have

(4,1) q(P)- I-’(’-IPa)d(dr
I., lq(-’p)--k(r-’P)Idd for any p e K.

On the. other hand, for any p.d. function q(p) on G, @(p)=

I In,q(r-a)gadr is a p.d. function belonging to F; and by Lemma 6,

q,() =f(Ppo, p0) for a certain fP. Hence the function @()---

I In,@(r-’a)dadr (in the left side of (4,1)) is expressed by

9) We oan assume that every p.d. function on G is continuous; see [5] 4.
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(4,2) (v) f() .f(vpo, o)

(: omplex uumber, P). Fm (,I), (4,2) and Lemma
we can see ha (, ) s aproxmaed by ]near eombna;ous of

p.d. functions on 2 uniformly on any compac subse of 2; and
hs heorem becomes clear by heorem 8.

i) is an element of G different from e, then there eists an

irreducible u-representation {, U(), } such that

Proof. i) Since H, aad , are compact as well as H and since

H is empty (from p q), there exists a neighbourhood V
e such that HVV;H , is empty. Let $(g) be the characteristic
function of V, then

is a p.d. fction on .e (Lemma 1), and f(p, p)0 =y[q, )if(p, )0
is lar if I(7, )0, h -pTp V, and - -g p V or some

Hand p G, hence <, V; VV7 HVV , consequently

H,7,72/, is no ms-cow,radiation). He b lheorm

8, there exists an elementary p.d. fnction 7(s, t) such that f0(p, p)

or every elementary p.d. 2unction f(s, t), by the results o 2, we
have

f,(p, p) (,, e,) (e, e,) f,(q, p),

which is a contradiction.

ii) From r e, here exists a point p e 9 such that rp p,

and by i), there exists an irreducible u-representation {, U(z),
such tha , ,, hence

namely U(r) 1, q.e.d.

Appendix.

If we assume, in the results of his paper, that G is----and

conequentiy 9 also ls-compct, we obtaia the results f [1].
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The method is as follows"
I) Let {, U(a), C} be an arbitrary u-representation of {2, G, }

and let the continuous function

on $2 correspond *o the element S e(C). Then we can prove that

(U()$)(p) (-p) and that, if {,, U(), (} is irreducible, ,here

exists a )> 0 such that

(, 7)= I(p)v(p)dp for

.and is finite-dimensional, and let {x, } be a complete

orChonorma] system, then --,a/(e)) implies

For any u-representation {, U(a), (}, the corresponding p.d.

function fp, q)= (U(.), U(eq)) is expressed by the seriese (with
posi,ive coefficients) of elementary p.d. functions (Cf. [4] 24,
Theorem 16 (4)), and {), U(a); } is decomposable into the direct

sum of countable number of irreducible u-representations. Hence
every (p.) ($e) is expressed by

(1) (p) -)-

-1 i-1

where every {9(), ,9,)} is a complete orthonormal system of

() in the irreducible u-epresentation {*), U()(a), ()} and the

series of the right side of (1) onverges absolu,ely and uniformly

on .
II) Le R be ,he to,ali,y of linesr combina,ions of ,he func,ions

,)(p) (defined above) and ,heir uniform limi, on . We shall show
,ha, R is a ring; *o his purpose, i, is sucien, *o prove ,hs* ,he

produc of *wo func,ions )(p) and )(p) also belongs

i* will easily be seen by Theorem 13 of .[4], Lemma 3 in ,he presen,
paper and the above equali,y (1).

I is eviden, ,ha, R con,ains ,he function 90(p) 1 and hat

(p)R implies (p)B. For any wo poin,s p, q2, there exis,s

a func,ion (s) R such ,ha, (p) (q) ,his fac, is proved from
he exis,ence of suciently many irreducible u-represen*a,ions (see
Theorem 10 (i).

10) The system {l(p), 9(p)} spans a primitive harmonic set defined in [1].
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III) Thus, by the well known theorem by I. Gelfand and G.
Silov, the ring R is the totality of all continuous functions on the
compact space ; i.e. an arbitrary continuous function on

approximated uniformly by linear combinations of members of pri-
mitive harmonic sets on
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