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By Nobuyuki NINOMIYA.
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(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1950.)

1. Introduction

Frostman’s theory? on equilibrium potentials of order « has
been recently extended by Kunugui® to generalized potentials. The
purpose of this paper is to study the same problem from another
point of view.

For preparation we state some definitions on generalized poten-
tials and capacities. Denote by 2 the whole Euclidean space, by
S(E) the diameter of a bounded Borel set E, by 7z the length of
a segment PQ, and by D7 the family of non-negative mass distri-
butions of total mass m on a bounded Borel set E'; especially when
m = 1, we denote it by Dz simply. Let &(¢) be a strictly monotone
decreasing and continuous function defined in the interval (0,«)
such that ltigl@(t) = 4 . Given any mass distribution x on E, we
call the Lebesgue-Stieltjes integrals

| 0020du(@ and ([ ,erdu@dnc)

the @-potentials and the @-energy integrals respectively with re-
spect to u. Put

L S o 3

& —ulegg sup jE(P(frm)du(Q) and W% —ug)lg ”E(D(m)dﬂ(Q)d/w(P),
then it is easily seen that

OR(E)ISVES+ o and OBE)ISWE + .

We define the @-capacity C*(E) of E as follows; if V%<+ o, then
C*(E) = ¢7'[V%], and if V%= + «, then C®*(E) = 0, where @ de-

notes the inverse funection of @. Hereafter we shall write for the
sake of simplicity Vz, Wz, C(E) for V3, W%, CYE).

1) O. Frostman: Potentiel d’équilibre et capacité des ensembles avec quelques
applications & la théorie des fonctions. Thése. Lund. 1935.

2) K. Kunugui: Sur quelques points de la théorie du potentiel. (I), (II). Proc.
Jap. Acad. vol. 21-23.
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2. Equilibrium potentials.
Let 2 be the ordinary space and &(t) satisfy the following con-
ditions®:
a) O@) is strictly monotone decreasing and continuous in (0, «)
and hm Ot) =

B8) t(P(t) is convex in (0 ). (What is the same, &(f) is convex

in % in (0, o).

Stzw(t)dt
7) jt2¢(t)dt<+oo and Tim 7 00

Then, from B), we see that @(rp) is subharmonic in 2—{Q} when
Q is fixed in 2. Accordingly, for any non-negative mass distribu-
tion p on a bounded closed set F, the potential with respect to u is
subharmonic in each component of £—F.

First, let us consider the maximum principle: Let @(f) satisfy
the conditions @) and B) and f(P) be continuous and superharmonic
in 2. If the potential u(P) with respect to a non-negative mass
distribution x whose kernel is a bounded closed set F' is <f(P) in

F, then w(P)<f(P) in £. In case &(t) = wlt:’ it ‘has been obtained

b 4o,

by Yosida®?. His proof is very elementary and interesting. The
general case may be treated by a slight modification. Let us state
the proof briefly. For any &>-0, take a closed subset F' of F such

that u(P) is continuous in F” and w(F'—F')<e. Then
SE s, 20r)dn(@)<e? in F', where s(P,3) denotes any sphere

with center P<F’ and radius 8. (a constant). Therefore,

L” s )(I)(TPQ)d,u.(Q)<€ in F'. Accordingly, qu)(rm)dy(Q) is continu-

ous in F/9; after all it become continuous in 2.9

3) If 2 is the plane, the conditions 8) and r) for O(t) must be replaced by the
following :

B O(t) is convex in log—l"— in (0, o).

t(l)(t)dt
Yy s
1) S tO(t)dt< +o and lrlﬂ s “0(r) < oo,

4) Y. Yosida: Sur le principle du Maximum dan la théorie du potentiel. Proc.
Imp. Acad. Vol. 17. pp. 476-478.
5) O. Frostman: loc. cit. p. 26.
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Let P* be a point where L’(D(rm)dp(Q)——f(P) attains its maxi-

mum. Then P*eF'. Using this fact, for any point Pe2—F, we
easily see that

w(P)—fAP)(2()— I (F)]-(F—F"),

where [ is the distance between P and F. Thus we obtain
w(P)Xf(P) in @—F.

Using the maximum principle, we obtain at once the following
two theorems.

Theorem A: Let &(f) satisfy the conditions a) and B) and F be
a bounded closed set of positive @-capacity. Then there exists meDy
such that the @-potential wuo(P) with respect to po ©s comstant and
equal to its maximum in F except a possible set of @-capacity O.

Theorem B: Let &O(t) and F be the same as above and f(P) be
continuous and superharmonic in 2. Then there exists €Dy such
that the @-potential uy(P) with respect to po is f(P)+v in F except a
possible set of @-capacity 0 and always < f(P)+v in 2, where v 18 a
suitable constant.

Remark: The mass distribution wy in Theorem A is what
minimizes® energy integrals

1) = [[ 00 @du(P)

with peD;; while, the distribution u in Theorem B is what minimizes
Gauss variations”

G = ||, 00 duQdu®)~2{ fP)iuP)
with p€Di.
Remark: The following fact is very important: Wy coincides

with .Vz for any bounded Borel set E. It is easily proved from
Theorem A and the properties® of W and V.

3. Poincaré’s condition.

Given a bounded Borel set E and its limiting point Py, we say
that P, satisfies Poincaré’s condition with respect to E, if there
exists a cone such that its vertix is P, and its interior is contained

6) O. Frostman: loe. cit. p. 56.

7) 8. Kametani: Positive definite integral quadratic forms and generalized poten-
tials. Proc. Imp. Acad. vol. 20, p. 11.

8) 0. Frostman loe. cit. pp. 49-52.
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in E. Now, we shall replace Poincaré’s condition by another poten-
tial-theoretic condition.
We obtain :

Theorem : Lot O(t) satisfy the conditions a) and v), and let E
any bounded Borel set, and Py its limiting point. If lim 7220 m(Es) >0,

=P, m(s)
then B@‘YL>O, where s denotes a sequence of closed spheres with
s>y Es
center Py.
Proof: There exist 8 and m such that @@)>0 and
wwmw

2 <Im in (0,8). For any sphere s with center P, it is
r3P(r)

easily seen that f(ﬁ(r@dm is continuous in £ and attains its maxi-
mum at P,, where dr, denotes a volume element at Q. Take a

small sphere s with center P, and radius r<%80. Then

VW, = inf j | o Qdnprz o

1
= 4o O(2r)-(2r)*
@r)-@r)-o, oo

and

Vg = inf supj O o) dp(Q) < — L —

we€D 'Eis PeQ

(ﬁ, y 5 supj (D(T'p@)d‘TQ

Let P* be a point where L O(rpg)dre, being continuous in £, at-

tains its maximum. Then we easily see that 7,m<37.
Hence

[, 000 dre< | 00 dro<| 0rs) dr,

= 4ws’tz<p(t) dt<47rrt2(0(t)dt
0 0 ’
Therefore

4o (%
Vil s so 2o(t)dt.

Accordingly

V. >_1_ .@2r)- @(2r) m(Es) 1 m(Es)
VE’a 24 j\zrtz ¥/ (t) dt m (s) 24m m(s)
0
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Thus we obtain

Tm- V> lim m(Es)>

Py Vg, 24m s>Fy 1m(8)

Hereafter we shall say that P, satisfies generalized @-Poincaré’s con-

dition with respect to E if lim V. >0.

=>Fy VEs

Theorem: Let @(t) be the same as above, u(P) a potential with
respect to a mon-negative mass distribution p on a bounded closed set
F, E any bounded Borel set, and P, its limiting point. If P, satisfies
generalized @-Poincaré’s condition with respect to E, then holds

u(Po) = lim u(P).

FSP—»PO
Proof: For any A<1 and <&, we obtain (p(zr)g (D(r),
since
- A7 Ar ;137.3
m.r3¢(r)>jot2(p(t) > j tzw(t)dt>(o(ar).jo #dt = £ oGr).
Therefore, for any e<Min(@Y(m), 1), we get

o(er) <§;—§‘— o(r) < —‘Z’- o(¢)- O(r).

We have only to prove our theorem in the case when PyFy and
u(Po)<+ «, where F, denotes the kernel of u. We can take a
sphere Sy with center P, and radius Ry<8 such that

[ oorpan@<e.

Put  w(P) = [0(ra)du@ and w(P) = 00mdu(@.
(] ~*0
Take a concentric sphere s,<CSy such that ux(P)<uxPo)+¢ in so.

Let ﬁ?‘rj v, >K>0. Then there exists a sequence of concentric
&=>Fo Es

spheres {s,} such that sy>s;>sp+--—>P and ;”“ >K>0.

Es,,

Take any s, with radius »,<eRy and its concentric sphere S, with

radius Rn< T4), then s, S,CS, and (p((;é’)) — < —0(e).

As C(Es,)>0, there exists p.,€Dg,, such that
supj O ro)dp Q<2 Vs, .
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_u(P) du(P) = L ul(P)d/»,,(P)-i—j'Ea e P)dp(P)

.., 2 PYu(P) <o) + e u(Po) + ¢

o, (PP = [ du@), 0 dun(P)

- au(Q)f, Prre)dus P+ du(a»j 0rro) di (P

0™ "0

We shall now evaluate the last two terms of the above expression.
The second term is

<2 VEsﬂ.p(s,,)<% Vs, u(S.)

2 g8 1
< .(p(Rn) S}%{? 4 j (P('rpq)d'rq
3

6 g® 1
= .=\ @ d
K 0R) 4 s Lﬂ (rey)dre

n

i. 36 . SO t2¢(t)dt <-§_' 56 .m([)(/r)
K O(R.) r.s K O(R,) "

6m ¢ 3 18m
<__K eks_scp(e)_ X e30(e).

Next, for any Pes, and any QeS,—

n,

7'ryQ 1 "'poq Tro

’rpop T
<1+ R.—r.

Tre—Trp =

Hence,

Tr=(1—8)rpe, Prr)XO[(1—e)r Poqlg ) O(7 ),

and

j )PS5 5 U

)

Therefore, the first term of the above expression is

3m 3m 3m .
S e Yo P T | e Q<
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Thus
[, uPnPI<ury)+ ),

where

— 3m 6 18m 3@
A(e) = e+ (1__8)3e+ X e3d(¢).

Therefore, there exists a sequence of points {P,} such that

Es>P,—~P, and u(P,)<lu(Po)+ A(g). Accordingly,
lim w(P)<u(Po) + A(e)-

EaP-)Po

Making ¢—0, we obtain lim w(P)u(Po).

EgP-)Po

We have lim u(P) = u(P;) from the lower semi-continuity of u(P).
EaP—>P0

Theorem: Let @(t) satisfy the conditions o), B), and v). Then
the equilibrium potential uo(P) in a bounded closed set F' of positive
D-capacity attains its maximum Ve at any point, of F, which satisfies
generalized @-Poincaré’s condition with respect to F.

Proof: Put
F' = {P; PeF, uo(P) = Vy}.

Then C(F—F") = 0.
If Tim -/*>>0, then P* is a limiting point of F and Fim —"° 0.
3-»Px VF& s> Pk s
Accordingly, uy(P*) = lim u(P) = Vr.
3P Px

Remark: Frostman has defined® the capacity density of E at

Py by lirII} ngii) in his theory of potentials of order «. For a
s>F,

sufficiently small sphere s,

- = o| CE3), _ 3™ pros] = 3" .
V= O[C(Es)] = d)[—é@ C(s)]g[ o ?[C(s)] B2, V..
C(s) C(s)

Hence we obtain

— V. 1 [ CEs)F
1 > 1 .
aLIIl::; Ve— 8m Lelga: Cs)

9) O. Frostman: loc. cit. p. 57.
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Thus our generalized @-Poincaré’s condition contains the density of
@-capacity by Frostman’s definition.

4. Energy integrals.

Kunugui® has obtained the following important theorem: Let
@(t) be a monotone increasing and convex function in (0, ) and
21‘}1 @) = 0. Then for any completely additive function o of Borel
sets on a bounded closed set F' in the ordinary space, an energy
integral

(o) = ”F(p(;%)da(Q)da(P)

with respect to o, if it exists, is always =>0; especially the equality

holds if and only if o==0. In his proof he has used Fourier trans-

formation of @ 1 . Here, we will give another proof by using
T'ro

Theorem A and B. We suppose that &(f) satisfies the conditions «)

and B). For our proof we shall use the following six lemmas.

Lemma 1: Let Fy and F: be two disjoint bounded closed sets of
positive D-capacity, u and v be two non-negative mass distributions of
total mass unity whose Lernels are Fy and Fo respectively. Then it
%8 impossible that

v = Ve[, P, 0rr)di(@)

and %= Vi~ |, du(P)[, 001)an(@)

vanish stmultaneously, where po and v denote equilibrium distributions
on Fy and Fy respectively.

Proof: Evidently v,=>0 and v.=>0. We easily see that the
equilibrium potential u(P) on a bounded closed set F' of positive
@-capacity is <V, in 2%, where 2% denotes the component of 2-F
which contains the infinity. Either Fy- 27, or F3- 97 is not empty.
Suppose that F1- 27, is not empty and P, is its arbitrary point.

Then Vi, >[ 00rs)dn(Q). Consequently, Vi>[ 0(rm)d(@ in
some neighbourhood U(P,) of P,. )

10) K. Kunugui: loc. cit. (II).



No. 1.] Equilibrium Potentials and Energy Integrals. 9
Being
WUBIT0, Vi w DRI dio)], 0@,

But certainly

Ve [E)—p [UPMNZ,_ do () 00mdn(Q).

]1'1~U
Thus,

V> |, duP), 0rin(@

Lemma 2: Let E be any bounded Borel sets and p,we€Dgp such
that

[ ot tu@inpr<+ e
and

[ orma@a@<+ .
I [ orrdn@~{ o0min@

=& (a constant) in E, then p=y.

Proof: Let o =pu—v and suppose o¢==0. Let o= p/'—»/ be
Hahn’s decomposition of o. Then there exists a closed sphere s2
such that o(s) = a>0, and we can take its concentric closed sphere

Ssuch that S)s and V(S—s)<s<a. Let fi(P) = Lbi dow, & de-

Yreu
noting a surface of s and do, a surface element at Mes’. Then,

filP)=A in s and == B on S, where both A and B are constants
and A>B>0. fy(P) is continuous and superharmonic in £2. Let
fe'!P)=B in S and =f,(P) in 2—S. Then f;(P) is also continuous
and superharmonic in 2. We see C(E)>0 from

([, ormdu@duP)<

and
”E(P(rp@)dy(Q)dy(P)<+ .

By Theorem B, there exist y, ue€Dz such that

11) = means the coincidence except a possible set of @-capacity 0.
12) O. Frostman: loc. cit. p. 82.
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[ o edm@=rP)+m

and
|, 00 @=FP) 72

in E, where v; and v, are suitable constants. Put

£ = [ 00w) (@ — | _00rmdn(Q).

Then f(P)=fi(P)—fxP)+v in E, where v = v;—v.. Clearly,
f(P)=A—B+v in E-s, v<f(P)SA—B+v in E-(S—s) except a pos-
sible set of @-capacity 0, and =7 in E—S. Next consider

[f@e = [ pPrao®) = [ +[  +[  sP0o@.

E-(S~8)

Of course o cannot have any mass on a set of @-capacity 0, since

f L‘p(m)dﬂ(Q)dn(P)<+ o

and

[ orrt@aBr<+ .
[, 7(P)e®) = (A=B+)-0), |_f(P)o(P) = 7-0(E—5),

[y @@ = @@~ PP
B.(S~s E.(S-5) E.(S—8)
=7y (S—8)—(A—B+7) -V (S—s)>—(A—B)-e+7-0(S—s)

Therefore,
jEf(P)dcr(P)>(A—B)(a- e)+7v-o(E)>v-a(E) = 0.

We have however, denoting « = u;—ps,

[s®ae®) = [ dop)|_otrmie(@

= [ 4@ o0ie® =0,

which is a contradiction.

Corollary : The equilibrium distribution on a bounded closed set
of positive P-capacity s unique.
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Hereafter, we suppose @(t)=>0 in (0, ). When E; and E; are
disjoint bounded Borel sets of positive @-capacity, for p€Dg, and
v€Dg, we put

[, 0t dn(QinP) ([ 06 QA P)

12

_d
G [MGDEI’ EDEJ [ ".EldN(P) SEz(p(erQ)d,,(Q)]

So far as there is no confusion, we shall write G (u,v) for
G [HGDEI’ VEDEZ]-
Lemma 3: Let Ey and E; be two sets stated above. If a pair
(w*,v*), p*€Dp and v*€Dg, minimizes G(k,v), then (u*,v*) has the
following properties;

i) C{P; PeE, g(P)<0} = 0 and w*{P; PeE,, g(P)>0} = 0,
i) C{P; PeEy, g P)<0} = 0 and y*{P; PeE,, go(P)>0} = 0,

where

z = j Llcﬁ(rp@) du*(Q)dp*(Q),
y = “E2¢(rm)dp*(Q)dv*(P),
y = sz,b* (P)Lz(P(rpQ)du*(Q),

0i(P) = 2| _0rm)dnn(@—z 0trm)drQ

and
g4P) = szz(P(""m)dv*(Q)-—zyLICP(rm)dﬂ*(Q)
under the assumption 0<x, y,2<+ .

Proof: For any §>0, put
A = {P; PeE,, i(P)>—38} and B = {P; PeEy, gi(P)<—20}.
Then A-B=0 and p*(4)>0 from L 0(P)dp*(P) = 0. Suppose
“1

C(B)>0. Then we can distribute a new mass = on FE; such that
= —p* on 4, =0 on B and +(B) = p*(4) =a>0, v=0 on

Fi—(A+B) and sup Sr¢(rpg)d-r(Q)<+oo. As p*+ereDy, for any

positive number <1, G(u*+ e, v¥)=G(1*, v*). Hence,
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0<2s j L HPYir(P)+ e"[zzj j  2r)dr(Q)d(P)

({00 003+ @) |
<—2%as+e?[ ,, 1

We can easily see that the coefficient of &2 is finite, and so the last
side becomes <0 for some positive number e<1, which is a con-
adiction. Therefore, C(B) = 0. Making &—0, we obtain
C{P; PeFE, g,(P)<0} = 0.

Accordingly, w*{P; PeE\, n(P)<0} =0,
since (] P r)dpX(QAp* (P) <+ o
Thus, w*{P; PeEy, g,(P)>0} = 0.
Similarly, we obtain
C{P; PeE,, g(P)<0} =0

and v¥{P; PeEs, g,(P)>0} = 0.

Lemma 4: Let Fy and F: be two disjoint closed sets of positive
@-capacity, then G(u,v)>1 for any peDr, and veDy,.

Proof : Let G* =inf G (,v). Then there exist {#;}eD; and

WEDF, VEDF,

{vi}€Dy, such that G(u;,v:){G*. We may suppose that both {u:}
and {v} are convergent. Let u*eD, and »*€Dy, be respectively their
limiting mass distributions. Then G*<G(p*,v*). On the other
hand,

4920

[[, 00 @ a0 QanP),

[[ 00w dr@arB<im|] oty

i»o

and
[, | 06 dv (@ = tim|  dudP) | 0@,

because @(rz) is bounded and continuous for PeF; and Q€EF,.

Hence, Gu*, v)<lim G, v)) = G*.

>

Therefore, G* = G(u*,v*). For p* and »*, let =,¥,2,01(P) and
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g2(P) be as was stated in the previous lemma. Then evidently
0<w,y, 2+ . Let

F'y = {P; PeFy, p(P)<0}

and Fy* be the kernel of p*. We show that Fy*<CF’,. Suppose that
there exists PyeFy* such that ¢i(P))>>0. Then ¢;(P)>0 in some
neighbourhood U(P,) of P, by the lower semi-continuity of ¢,(P) at
P,. As p*[U(Py)]>0, we obtain

p*{P; PeF1, g:(P)>0}>0.
which is a contradiction. Now, let p#* be the equilibrium distribu-
tion on Fy* (of positive @-capacity). Then

OZL *gl(P)duo* (P) = zzvp,*—zxsm dy*(Q)SF *(p( ) duc*(P).

Hence we see 2?<zx. Similarly, let »* be the equilibrium distri-
bution on the kernel F,* of »*, then

0=, 0:Pan*(P) = 2V~ duX(Q), 00D D).

Hence we see 22<zy. It is impossible by Lemma 1 that 22 = zx and

22 = zy hold simultaneously. Thus, we obtain G* = ﬁz%>1.

Lemma 5: Let Ey and E, be two disjoint bounded Borel sets of
positive @-capacity. Then G(u, v)=1 for peDg and veDg,

Proof: Let {F.®} and {F,®} be sequences of closed subsets of
E and E; respectively such that

F® CF0 CF® -+ CE,
@2 CF® - CEy,
w(FP) A w(By) and »(FP) 4 u(Es); then we can easily see that
C(FP)>0 and C(FP)>0 for sufficiently large n. By Lemma 4,
G () v)

>1.
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Making n—>o, we obtain G(u, v)=1.

Lemma 6: Under the same condition as in Lemma 5, G(u,v)>1
for peDg and ve€Dg,.

Proof: Suppose that G(u*,v*) =1 for p*eDy and v*eDg,
Then (¢*, v*) minimizes G[p€Dg,, v€Dg]. For p* and v*, let
%, Y, 2, 01(P) and go(P) be same asg in Lemma 3, and

E{ = {P; PeE\, 2(P)<0} and E/' = {P; PeE, g:(P)>0};
then evidently 22 = xy and vy gu(P)+V z g(P) = 0. As
w*€Dgy, v*€Dg, C Dryiuy
by Lemma 3 and
G(p*, v*) =1, (u*, v

also minimizes
G ”’GDE{, vE D'E2+El”]

by Lemma 5. Hence, by Lemma 3

C{P; PeE,+ Ey", g;(P)<0} = 0,
and so

C{P; PeE,", g(P)<0} = 0.
Namely,

olp; Pert, | L apy>0) = 0.
( %
Thus, C(E,") = 0.
Accordingly,

C{P; PEE:[, g1(P)=}=0} = 0.
Similarly, we see

C{P; PeE,, g)(P)+0} = 0
and so C{P; PeEy, o/ L P+ o} —o.
&x

Thus we obtain ¢g(P)=0 in E;+E,. Next we shall show that
0(P)=0 in E;+FE, Let M be any bounded Borel set contained in
Ei+E,—(E1+Ey). As p*eDg, v*€Dyg,n and Glu*, v*) =1, (u*,v*)

also minimizes G[u€Dz, €Dz, x] by Lemma 5. Hence,
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C{P; PeEy+ M, gi(P)<0} =0

and so C{P; PeM, g,(P)<0} = 0.
Therefore,  O{P; PelM, / Y gpy>0) =o.
Similarly, C{P; PeE\+ M, ¢:(P)<0} = 0,
and so C{P; PeM, g:(P)<0} = 0.
Thus, C{P; PeM, :(P)==0} = 0.

As M may be taken arbitrarly in
E1+ Ez“'(El"“'EZ),

we obtain ¢(P)=0 in E,+E, Let py be the equilibrium distribu-
tion on E,+E,. Then

0= j __ 01(P)dpo(P) = 2Verm—2aVess,
E1+E2 -
and so 2z = x.
Finally, L (p(rm)d#*(Q);SE O r)d*(Q)
“1 2
in Eh+ E,, which contradicts to Lemma 2.
Corollary :  Under the same condition
[, 0 mau@aup x ([ _o0a@anp)
1 ey
" 2
] Eld;»(P)j% 0 (@) |

Sfor peDy and veDy, where m and n are arbilrary positive numbers.

>1

As an immediate consequence of this corollary, we obtain
Theorem : Let ®(t)=0 and satisfy the conditions a) and B).

Then an energy integral

1) = ([, #o)do(@ o)

with respect to any mass distribution « on a bounded Borel set E, if
it exists, is always =0; especially the equality holds if and only if
o=0.

Remark: In our proof, we can easily see that the non-negativity
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of @(t) has only to be supposed in (0, 8(E)). Accordingly, we obtain
the following corollary: Let @(t) satisfy the conditions a) and B).
Then an energy integral

I(o) = j L(P('rm)do(Q)dff(P)

with respect to any mass distribution o of algebraic 0 on a bounded
Borel set E, if it exists, is always =0; especially the equality holds
if and only if o=0.



