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1. Introduction
Frostman’s theory on equilibrium potentials of order a has

been recently extended by Kunugui) to generalized potentials. The

purpose of this paper is to study the same problem from another
point of view.

For preparation we state some definitions on generalized poten-
tials and capacities. Denote by 2 the whole Euclidean space, by

(E) the diameter of a bounded Borel set E, by r the length of
a segment PQ, and by D)3 the family of non-negative mass distri-

butions of total mass m on a bounded Borel set E; especially when
m 1, we denote it by D simply. Let (t) be a strictly monotone
decreasing and continuous function defined in the interval (0,)
such that lim()= + . Given any mass distribution on E, we

t0

call the Lebesgue-Stieltjes integrals

(,)d(Q) and (r)d(Q)d(P)
the C-potentials and the C-energy integrals respectively with re-
spect to . Pat

V= infsup (r)d(Q)and W.= nf O(f)d(Q)d(P)

then it is easily seen that

[8(E)]V+ and [8(]W+ .
We define the C-capacity C(E) of E as follows; if V+ , then
C*(E) -[V], and if V. = + , then C(E) 0, where - de-
notes the inverse function of . Hereafter we shall write for the
sake of simplicity V, W, C(E) for V, W, C.(E).

1) 0. Frostman" Potentiel d’quilibre et capacit des ensembles avee quelques
applications b. la thorie des fonctions. Thse. Lund. 1935.

2) K. Kunugui: Sat quelqaes points de la thorie du potentiel. (I), (II). Proc.
Jap. Acad. vol. 21-23.
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2. Equilibrium potentials.

Let 9 be the ordinary space and (t) satisfy the following con-
ditionsS):

a) (t) is strictly monotone decreasing and continuous in (0, oo)
and lim ((t) ---- + oo.

g-O

B) re(t) is convex in (0, oo). (What is the same, (() is convex

in 1 in (0, oo)).

) Iotf(t)dt< + (P(t)dt
and lim

,-,0 (r)

Then, from B), we see that (rfQ) is subharmonic in tf-{Q} when
Q is fixed in $2. Accordingly, for any non-negative mass distribu-
tion t on a bounded closed set F, the potential with respect to t is

subharmonic in each component of
First, let us consider the maximum principle" Let (t) satisfy

the conditions a) and B) and f(P) be continuous and superharmonic
in 9. If the potential u(P) with respect to a non-negative mass
distribution t whose kernel is a bounded closed set F is ftP) in

F, then u(P)f(P) in $2. In case (t)= __1 it .has been obtained

by Yosida). His proof is very elementary and interesting. The
general case may be treated by a slight modification. Let us state
the proof briefly. For any e)0, take a closed subset F’ of F such
that u(P) is continuous in F’ and t(F--F’)s. Then

I (P(r)dt(Q)s s(P,) any spherein F’ where denotes

with center Pev and radius 8 (a constant). Therefore,

I.,..(.)(P(re)dl(V)<e in F’. Accordingly, I..,(P(ree)d,(V)is continu-

ous in F’); after all it become continuous in

3) If 9 is the plane, the conditions t) and r) for 0(t) must be replaced by the
following:

t’) 0(t) is convex in log., in (0, o).

)t(t)dt
r’) ot(t)dt+ and lim

,-o r’(r) <+
4) Y. Yosida" Sur le principle du Maximum dn la th6orie du potentiel. Proc.

Imp. Acad. Vol. 17. pp, 476-478.
5) O. Frostman. loc. cir. p. 26.
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Let P* be a point where ],(P(r)d(Q)--f(P} attains its maxi-

mum. Then P*eF. Using this fact, for any point P2--F, we
easily see that

u(P) --f(P)_((1)-- [$(F)].(F--
where 1 is the distance between P and F. Thus we obtain
u(P)f(D in --F.

Using the maximum principle, we obtain at once the following

two theorems.
Theorem A Le$ (t) satisfy the condigons & and ) and F be

a bounded closed set of positive t-capacity. Then there exists

such that the t-potential uo(P) with respect to is constan$ and
equal to its maximum in F except a possible set of t-capacity O.

Theorem B Let (t) and F be $he same as above and f(P) be

continuous and superharmonic in . Then there exists oeD such
tha$ the t-potential uo(P) with respec to o is P)+ in F except a

possible set of t-capacity 0 and always f(P) +7 in , where 7 is a

suitable constant.

Remark: The mass distribution 0 in Theorem A is what
minimizeso energy integrals

with D,; while, the distribution o in Theorem B is what minimizes
Gauss variations)

with D.
Remark The following fact is very impor,an W coincides

with .V for any bounded Borel se E. It is easily proved from
Teorem A and the propertiess) of W and V.

3. Poincar’s condition.
Given a bounded Borel set E and its limiting point Po, we say

that P0 satisfies Poincar6’s condition with respect to E, if there
exists a cone such that its vertix is P0 and its interior is contained

6) o. Frostman: loc. cir. p. 56.
7) S. Kametani: Positive definite integral quadratic forms and generalized poten-

tials. Proc. Imp. Acad. vol. 20, p. 11.
8) O. Frostman loc. cir. pp. 49-52.
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in E. Now, we shall replace Poincar6’s condition by another poten-

tial-theoretic condition.

We obtain"

Theorem: Let q)(t) satisfy the conditions a) and I), and let E

any bounded Bord set, and Po its limiting point. If iim m(Es)
,o re(s)

o,

then lim-.= >0, where s denotes a sequence of closed spheres with
o V

Po.
Proof: There exist o and m such hat (t)0 and

tO(t)dt.m in (0, o). For any sphere s with center P0, it is
r(r)

easily seen that [ (r)dr is continuous in 9 and attains its maxi-

mum at Po, where tire denotes a volume element at Q. Take a

small sphere s with center Po and radius r<. Then

4v.(2r).(2r) 1 1
24 m (s)

and

Vr, inf sup (r)dt(Q):1 sup[ (r)dre.
m(Es)

Let P* be a point where I(P(rq)dre, being continuous in $2, at-

rains its maximum. Then we easily see that ro,_3r.
Hence

Therefore

Accordingly

Vr< t(P(t)dt.
m(Es)

} 1 (2,s. (2r). m(Es).> 1 m(Es)
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Thus we obtain

lim V., 1 m(Es)>0

Hereafter we shall say that P satisfies generalized (P-Poincar’s con-

dition with respect to E if lirn V %0
-’0 V"

Theorem: Let (P(t) be the same as above, u(P) a potential with

respect to a non-negative mass distribution t on a bounded closed set

F, E any bounded Borel set, and Po its limiting point. If Po satisfies
generalized -Poincar$’s condition with respect to E, then holds

u(Po) = lim u(P).
EPP

since

herefore, for any sin(O-(m), 1), we

e( r) < am < a e(e).

We have only o rove our heorem in he ease when PN, and

(P)+ , where Po denotes he kernel

shere S wih eener P, and radius Ra such

Pu (P) ()g().. and (P) _s(eee)g().
ake a eoneenrie shere S such ha (P)(P,)+ in .
Le lim ’ )KO. hen here exists a sequence of concentric

*o V

sheres {8 such ha 8o8t8 Po and

Take any s with radius r,eRo and its concentric sphere S’ with

( (r,) ().radius R =r,e], then s ( S ( S0 and
(R,)

As C(Es,)O, there exists #,eDr such that

sup (rq)dg,(Q)2
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We shall now evaluate the las two terms of the above expression.

The second term is

2<2Y,.,(Z,)<-K V,,. ,(SD

2
p(R)’sau 4rr s.

3

6 s 1

3

1 s t(t)dt 6 6 m(r)
(R)

6m es. 8 (s) 18m<g- - K

Next, for any Ps,, and any QeSo--S,,

Hence,

and

3m (r)(vq)eP[(1--e)ro] (1_)

(1--)a

Therefore, the first term of the above expression is

8m
(1_ s)a

3m
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Thus

where

u(P)dt,(P)u(Po) + A(s),

(l--e)

Therefore, there exists a sequence of points {P} such that

EPPo and u(P,)u(Po) + A(s). Accordingly,

lim u(P)__u(Po) +A(e).
/’Po

Making sO, we obtain lira u(P)__u(Po).
.EgP-P

We have lira u(P)= u(Po) from he lower semi-continuity of u(P).
PPo

Theorem: Let (t) satisfy the conditions a), ), and ). Then
the equilibrium potential uo(P) in a bounded dosed set F of positive

t-capacity attains its maximum V. at any point, of F, which satisfies
generalized -Poincar’s condition with respect to F.

Proof: Put

F {P; PeF, uo(P)

Then C(F--F) 0.

If lira V 0, then P* is a limiting point of F and lira..v .0.
Accordingly, uo(P*) lim u(P)= V.

Remark Frostman has defined) the capacity density of E at

P0 by lim C(Es) in his theory of poteatiaIs of order a. For a
.,’o C(s)

sufficiently small sphere s,

VC(Es).c(s) (PV, (P [C(Es)] (P
t-C(S)- [C(Es)], [C(s)]

[C(Es)]a
t. c(s) ]

Hence we obtain

E> 1 Fl-i- C(Es)]lim- -_---- m

9) O. Frostman: loc. cit. p. 57.
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Thus our generalized -Poincar’s condition contains the density of
(P-capacity by Frostman’s definition.

4. Energy integrals.

Kunugui) has obtained he following important heorem" Let
(t) be a monotone increasing and convex uneion in (0, oo) and

lira (t)---0. Then or any completely additive 2unction r of Borel

ses on a bounded closed set F in he ordinary spaee, an energy

integral

1

with respect to z, if it exists, is always __0; especially the equality

holds if and only ff z O. In his proof he has used Fourier trans-

format:ion of Here, we will give anot:her proof by sing

Theorem A and B. We suppose t:ha: 0(t) sat:isfies t:he eondit:ions )
and B). For our proof we shall use t:he following six lemmas.

Lemma 1: Let F and Fe be two disjoint bounded closed sets of
positive (P-capacity, t and be two non-negative nass distributions of
total mass unity whose kernels are Ft and F respectively. Then it

is impossible that

and

vanish simultaneously, where o and o denote equilibrium distributions
on F and F respectively.

Proof: Evidently 0 and 0. We easily see ha he
equilibrium potential uo(P) on a bounded closed se For positive

-capaciy is V in 9, where 7 denotes he componen of 9-F
which contains he infinity. Either F- or F.9 is no empty.
Suppose tha F., is no empty and Po is is arbitrary point.

The.

some neighbourhood U(Po)

10) K. Kunugui: loc. tit. (II).
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Being

But certainly

Thus,

V>I,dt(P)I (r)d0(Q)

that

and

Lemma 2 Let E be any bounded Borel sets and t,,eD such

II(r)d(Q)d(p)<+ o

,n (a constant) in ’, then

Proof: Let e =/-- and suppose 0. Let =/’--,’ be
Hahn’s decomposition of e. Then there exists a closed sphere s
such that (s)= a>0, and we can take its concentric closed sphere

S such hat S ) s and ’(S--s)<s<a. Let f(P) ,-. d, s de-

noting a surface of s and d a surface element at Mes. Then,
f(P) . A in s and B on S", where both A and B are constants
and ABO. f,(P) is continuous and superharmonic in 9. Let
f’,P)- B in S and --f(P) in t2--S. Then ft.(P) is also continuous
and superharmonic in 2. We see C(E)>0 from

and
II(r)dt(Q)dt(p) oo

II (r)d(Q)d,(P)+ oo.

By Theorem B, there exist /1, geD2 such that

11) means the coincidence except a possible set of -capacity 0.
12) O. Frostman: loc. cit. p. 32.
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and

I(r)dt(Q) f(P)+

(r)d/(Q)f(P) +

in , where / and / are suitable constants. Put

Then f(P)f(P)--fi(P)+7 in E, where /= /--/.. Clearly,
f(P)A--.B+ in E.s, 7__ff(P)A--B+ in ’.(S--s) except a lOS-

sible set oi (P-capacity 0, and / in E--S. Next consider

Of course e cannot have any mass on a set of (P-capacity 0, since

and
II()dt(Q)dt(p) + o

(r)d,(Q)d,(P)+ .
I.,f(P) de(P) (A--B+ ). r(s), I_fs(P)da(P) . a(E--S),

.f(P)d,’(P)_.t’(S---s)--(A--B+) ’(S-s)--(A---B). +. (r(S-- s)

Therefore,

f(P)dr(P)(A--B)(a-- e) +.(E).r(E) O.

We have however, denoting

f(P) da(P) Ida(P)IeP(r)d(Q)
Jd(Q)J(r)dr(P) O,

which is a contradiction.

Corollary,: The equilibrium distribution on a bounded closed set

of positive (P-capacity is unique.
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Hereafter, we suppose (P(t)__0 in (0, oo). When E and E are

disjoint bounded Borel sets of positive (P-capacity, for teD and

vDz: we put

So far as there is no confusion, we shall write G (, v) for

G [peD, veDr].

Lemma 3: Let E and E be two sets stated above. If a pair

(*, ,*), *eD and ,*eD, minimizes G(, ,), then (*, ,*) has the
following properties;

i) C{P; PeE, g(P)0} 0 and *{P; PeE, g(P)0} 0,
ii) C{P; PeE, g(P)0} 0 and *{P; PeE, g(P)0} 0,

where

and

under the assumption

g(P) zI(rq)d,*(Q)--zyI(P(r)dt*(Q)

Ox, y, z+

Proof: For any 3>0, put

A {P; PE, g(P)--} and B {P; PE, g(P)--2}.

Then A.B 0 and t*(A)0 rom [ g(P)dt*(P) O. Suppose
J

C(B)O. Then we can distribute a new mass r on E such that

r=--* on A, r0 on Band r(B)=*(A)=a0, r0 on

E--(A +B) and sup [ (r)dr(Q)+ . As * + ereD for any

positive number e<l, G(*+ st, v*)G(*, ,*). Hence,
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--28a+s[ ,, ].

We can easily see that the coefficient of e is finite, and so the last

side becomes <0 for some positive number e<l, which is a con-

ad iction. Therefore, C(B) O. Making 0, we obtain

C{P; PeE,, g(P)<O} O.

Accordingly, g*{P; PE, g(P)<O} O,

Thus, *{P; PeE, g(P)>0} 0.

Similarly, we obtain

C{P; PE, g(D<0} 0

and *{P; PE, g(P)>0} 0.

Lemma g Let F and F2 be two disjoint closed sets of positive

C-capacity, then G(, ,)>1 for any eD and

Proof" Let G* inf G (g, v). Then there exist {g}eDk and

{,}eD such that G(, ,) G*. We may suppose that both

and {,.} are convergent. Let *eDr and ,*D be respectively their

limiting mass distributions. Then G*G(*,,*). On the other

hand,

and
IIr(r) II (r)d,(Q)d,(P)du*(Q) d* (P)_lim

o

because )(r)is bounded and continuous for PF and

Hence, O(g*, v*)_<lim G(g, v) G*.

Therefore, G* G(g*, ,*). For t* and .*, let , y, z, g (P) and
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g2(P) be as was stated in the previous lemma. Then evidently

0,, y, z+ o. Let

F {P; PeF, g(P)_0}

and F* be the kernel of /*. We show that F*F. Suppose that
there exists PoeF* such that g(Po)O. Then g (P)0 in some
neighbourhood U(Po) o Po by the lower semi-continuity of g(P) at

P0. As/*[U(Po)]0, we obCain

/*{P; PeF, gl(P)>0}/0.

which is a contradiction. Now, let t0* be the equilibrium distribu-

tion on F* (of positive C-capacity). Then

OI.g(P)dto*(P) zV.--zxIr..d,*(Q)I,.(q)dto*(P).
Hence we see z_z,. Similarly, let ,o* be the equilibrium distri-

bution on the kernel F* of ,*, then

Hence we see zzy. It is impossible by Lemma 1 that z zx and

z--- zy hold simultaneously. Thus, we obtain G*--x’-’Yl.
z

Lemma S: Let E and E be two disjoint bounded Borel sets of
positive O-capacity. Then G(t, ,)_1 for teDz and

Proof: Let {F,O)} and {FY)} be sequences of closed subsets of
E and E respectively such that

Fo (o ( Fm ( ( E,
F ( F ( F ( ( E,

(F) (E) and ,(F:) v(E,) then we can easily see that

C(F))O and C(F)O for sufficiently large n. By Lemma 4,

G (, )
1 1

[t(2) v(F: IF, dt(P)IF,o. C)(rq)d’(Q)]
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Making no, we obtain G(t, ,)::>_1.

Lemma 6 Under the same condition as in Lemma 5, G(, )I
for D, and ,eD..

Proof: Suppose that G(g*,,*)= 1 for g*Dr and
Then (g*, ,*) minimizes GIg,eDit, ,D,]. For * and ,*, let
x, y, z, gt(P) and g(P) be same as in Lemma 3, and

E’ {P; PeE, g(P)_0} and E" {P; PeE, g(P)>0};

then evidently z= xy and V/-g(P)+ V’--g.(P)= 0. As

/*eD,, v*eD.. ( Dr..+,,
by Lemma 3 and

also minimizes

by Lemma 5. Hence, by Lemma 3

and so

Namely,

Thus, C(E’) O.

Accordingly,

C{P; PeE+ E", g(P)<0} O,

C{P; PeE", g.(P)<O} O.

o.C P; PeEt",

C{P; PE, g(P)=t=0} = 0.

Similarly, we see

C{P; PeE, g.(.P)=l=0} 0

and so C{P;PE,. g(P)4=O} O.

Thus we obtain g(P)O in Et+E. Next we shall show that

gt(P)O in E+E. Let M be any bounded Borel set contained in

E+ E.--(E, + E). As *eDr,, *D..+ and G(*, *) 1, (*, *)
also minimizes G[eD, ueDr+] by Lemma 5. Hence,
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and so

Therefore,

Similarly,

and so

Thus,

c{P; PeE + M, 0

C{P; PeM, ge(P)<(0} 0.

C{P; PeM, / gt(P)>0} = 0.

C{P; PeE+M, g(P)O} ---- O,

C{P; PeM, g(P)<O} O.

C{P; PeM, gl(P):4=0} 0.

As M may be taken arbitrarly in

+
we obtain g(P)O in E+E2.
tion on E+Ez. Then

Let 0 be the equilibrium distribu-

0 J,_g(P)dt.o(P) zVi-2i--zx

and so z x.

Finally,

in E+E, which contradicts to Lemma 2.

Corollary Under the same condition

II(P(r)dt(Q) dt(P) I(P(r)d,(Q)d,(P)
[j’dt(P)I..(r)d’(Q)]

for tDt and _,, where m and n are arbitrary positive numbers.

As an immediate consequence of this corollary, we obtain

Theorem: Let (t)>0 and satisfy the conditions a) and B).
Then an energy integral

I(o.) II(P(r)dr(Q)dr(P)
with respect to any mass distribution r on a bounded Borel set E, if
it ez, ists, is always 0; especially the equality holds if and only if
TO.

Remark In our proof, we can easily see that the non-negativity
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Of (t) has only to be supposed in (0, 3(E)). Accordingly, we obtain

the following corollary: Let (P(t) satisfy the conditions a) and .).
Then an energy integral

I() II(r)d(Q)d(P)

with respect to any mass distribution of algebraic 0 on a bounded
Borel set E, if it ezists, is always 0; especially the equality holds

if and only if --0.


