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22. On the Behaviour o the Boundary o
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By Yasutaka NAGAI.
Mathematical Institute, Naniwa Daigaku.

(Comm. by K. KUNUGI, M.J.A., April 12, 1950.)

We shall define the generalized harmonic measure of the boundary
of a given Riemann surface and then classify it into two types.

Theorem 1. (An extension of R. Nevanlinna’s theorem1) Let F
be a Riemann surface with a finite number of sheets spread over
the z-plane and have Green’s function and E be the set of its all
accesible boundary points. We map the universal covering surface
F of F on lwl<l, then the measure of e on wl=l, which corre-
sponds to E, is 2zr.

Proof. The mapping function z--f(w) is automorphic with
respect to a Fuchsian group G and let F be mapped on a funda-
mental domain Do, which contains w0=0. Let w be its equivalent.
Since F has Green’s function, we have by Poincar6’s theorem

(1-] I)< 1

We shall show that characteristic function T(r) of f(w) is bounded.
Let a0 be any point in Do and a be its equivalent, then we have

Wo ao Wn an
1 o" w0 1 .w

Hence

laol=

From this we can easily deduce that

1-1ao]

With respeet to a general meromorphie funetion f(w), N(r, a)
and (1-v(a)), where r(a) is the absolute value of a-point of f(w),

rr
are reeiproeally uniformly bounded for some set of a.

Now we apply it on our automorphie function f(w). Denote
by n(z) the number of sheets of F above z. Since F eonsits of a
finite number of sheets, the maximum of n(z) when z varies on the

1) R. Nevanlinna: Eindeutige Analytische Funktionen. Berlin, (1936), p. 204.
2) H. Poincar6 Sur l’uniformisation des fonction nalytiques. Acta. Math,

31 (1907).
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z-plane is finite ] and let n(a)=]. Then a small disc K about a is
covered ]-times by F. Hence the part of F above K contains
discs; F, F, ..., F consisting of only inner points of F, where a

piece of a Riemann surface of (z-zo) above K is considered as n
discs, and their transforms into Do are Jordan closed domains" G,
G, ..., G. Let d be the minimum distance between these ] domains
and ]w]=l. The b-points of f(w) for any point b in K are both in

Do /, , ...,/, where /e and outside Do all , where [{} is
equivalent point of

Now for (i=1, 2, ..., ]) we have by (2)

so that

Finally we have by (1)

Y (1-11) (1-lwl)<.
v=0 i=1

This left side is the summation of all b-points of f(w)and it is
obviously uniformly bounded irrespective of b in K. Hence as above
stated N(rb) is too uniformly bounded in K.

On the other hand by R. Nevanlinna’s theorem we have

T(r)= I rN(r’ b)dz +O (1)

Hence T(v) is bounded, q.e.d. Next since T(r) is bounded, by R.
Nevanlinna’s theoremS) limit f(w) exists almost everywhere on
wl=l, when w tends to wl=l nontangentially. Obviously this

limiting values belong to E, so that measure of e on wl=l is 2=,
q.e.d.

Next we shall, after R. Nevanlinna, measure the boundary of
a Riemann surface spread over the z-plane as follows.

In the first place we consider a connected piece / of F, which
is bounded by a finite number of closecl Jordan curves (/’) consist-
ing of only ordinary points of F. We call hereafter (/)the
relative boundary of with respect to F and the other boundary
E of F which is the boundary of F, "proper". Now we approxi-
mate F as well-known by a sequence of Riemann surfaces" Fo
FF F,F such that F, consists of a finite number of

3) R. Nevanlinna" loc. cir. 1), p. 171.
4) R. Nevanlinna" loc. cit. 1), p. 197.
5) R. Nevanlinna" loc. cit. 1), pp. 106-114, and iJber die LSsbarkeit des Diri-

chletschen Problems ftir eine Rie’ unnsche Fliche. GSttingen Nachr. (1939)
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sheets and is bounded by (F) and a finite number of closed Jordan
curves (C), where C does not split up F into two pieces F:, F’
abutting along C such that CF and F" consists of inner points

of F. Next we consider a harmonic function (z) on F with the
next boundary condition;

,(z)--0 on (F*), ,(z)----1 on (C).
In fact we can find this function as follows. Since is bounded

by only closed Jordan curves, obviously has Green’s function and
consists of a finite number of sheets. When we map the universal
covering surface F; of F on iwl(1, (F) and (C,) correspond to
arcs e and e respectively and by theorem 1 me /me--2r.

Let
1 I 1-rU(w) --U(re) --- e 1 +r 2r cos ( O)

d.

Then U(w)--1 on e. and U(w)=O on e. We put t(z)--U(w),
then .(z)is the required function. Obviously by the maximum
principle

0</(z)<(z) on .
If _-, then by Harnack’s theorem, lim ,(z)=(z) is

uniformly convergent on F, so that (z) is a bounded harmonic

function on F. We call (z) "harmonic measuring function" be-
longing to / and (z) its approximating function.

Definition. According to (z)0 or 0, we call respectively
after R. Neyanlinna) that the absolute harmonic measure of the
proper boundary E of is zero and is "of the first kind", or
that the absolute harmonic messure of E is positive and is "of
the second kind".

Considering the above stated process, it is easily seen that the
nature of (z)0 or 0 is not only independent of the selection of
(C), but of a suitable slight deformation of (F).

When specially (F) consists of only one closed Jordan curve F,
which separates F into two pieces F’, F" where F’ consists of only
ordinary points of F, we have next Myrberg-Tsuji’s theorem.
Theorem 2. (Morberg-Tsuji)7)

(i) If F has no Green’s function, then t(z) O.
(ii) If F has Green’s function, ihen t(z)0.

6) R. Nevanlinna: loc. cit. 5).
7) P. J. Myrberg: (Jber die Existenz der Greenschen Funktionen auf einer

gegebenen Riemannschen Fltchen. Acta. Math. 61 (1938).
M. Tsuji: Some metrical theorems on Fuchsian groups. Japan. Journ.

Math. 19 (1947), pp. 509-512.
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Proof. Let G(z, a) be a Green’s function of F with a loga-
rithmic singularity at a ordinary point a of F’, where F, is the
connected piece of F bounded by (C) including a and F. Then

(z)=0 on /, (z)=l on (C),
Then by the maximum principle

(1-Yt(z)MG,(z,a) onF., where

Hence
(1-7(z))M,>G,(z, )

G(z,)=O on (C).

M--max. G,(z, a)::>0.
on F

on F.. (3)
Next suppose that F0 includes F. Since G,(z, a)-Go(z, a) is obviously
harmonic at a, it is harmonic on Fo. Hence by the maximum
principle

max. (G(z, a)-Go(z, a))>max. (G,(z, a)-Go(z, a))
on (C) on F

Namely

max. G(z, a)M-k where k--max. Go(z, a)>O.
on (C) on F

Then by (3)

Namely

1-- min. (z)’M, max. G,(z, a)__M,-k.
on (C) ] on (C)

min. (z)
on (C) M.

Since by the hypothesis G,(z, a) and M.- (n-), then

min. (z)=0.
on (C)

Namely (z)0, q.e.d.
(ii) Let G(z, a)be Green’s function of F and m=min. G(z,

on F
Then since (z)--0 on F, .(z)--I on (C), by the maximum principle

Hence

m-G(z, a).t,(z) on ..
m

m-G(z, a) .u(z) on .
m

By the property of Green’s function for m>0 we have zoeF
such that G(zo, a).m. For this Zo

(Zo) > o.
Hence u(z) O, q.e.d.
Moreover we separate F into k connected pieces" F, F, ...,
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F, each of which has the relative boundary F() and the propre
boundary E, and let 5(z) be measuring function of /. Then we
shall prove

Theorem 3. (i) If (z)-O, then every t(z)-O.
(ii) If every t(z)O, then (z)O.

Proof. (i) By the boundary condition-
u(z)<t(z) on F, where F, is the connected piece o F,

which is enclosed by (F) and ()(C ). For n-
OYt(z)t(z) on F (m--l, 2, ..., k).

Since by the hypothesis u(z)-O, then

(z)-0 on F, (m--l, 2, ..., ]), q.e.d.

(ii) We suppose that (z)0 and we put

M-=-- max. (z)>0.
on all (F)

Then

(z) --Mu(z) onF (m--l, 2,..., k)
For n-

t(z)-Mfi(z) on F (m=l, 2,..., ]).
Since by the hypothesis every (z)0, then

t(z)=M on every F ( 4 )
On the other hand (z) is harmonic on F. and (z)=0 on (F) and
(z)>0 on (C()), hence by the maximum principle we can find such
a point z0 on (C()), that

(z0) >M.
This contradicts to (4) and therefore (z) must be 0, q.e.d.
Finally we shall prove;

Theorem 4. Let F and F be respectively a Riemann surface
spread over the z-plane and the w-plane, and both correspond in a
one-one confomal manner by w---f(z), z-(w). If F is of the first
kind or the second kind, its transform F must be respectively of the
first kind or of the second kind:

Proof. We consider harmonic measuring iunction (w) oi
with is approximating function, U,(w), then 5,(z)=U,(f(z)) is surely
a approximationg function, or /. rnd . both consist of only inner
points.

Hence or n-t(z)u(z)O, or u(z)O, so that respectively

(w)0 or U(w)O, q.e.d.




