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Introduction.

The concept of local ’ring was introduced by Krull [7] . That
of semi-local ring, a generalization of local ring, was introduced
by Chevalley [1]. It wa defined namely as a Noetherian ring R
possessing only a finite number of maximal ideals. If denotes
the intersection of all maximal deals n a semi-local rng R, then

/=(0), and so, R becomes a topological rng with {m} as a

system of neghbourhoods of zero. Chevalley derived many prop-
erties by making use of the concept of ring of quotients introduced
by Grell [5]. He also introduced, in [2], a generalization of ring
of quotients, in order to generalize Proposition 8, II, [1]. But this
generalization was only wth respect to a Noetherian ring and he
complementary set of a prime ideal. A further, and very natural,
generalization of the concept of rng of quotients was given by
Uzkov [6]. But it seems to me that also this generalization s not
convenient to be applied to a generalized theory of semi-local rings
which I want to present in the following. So we first introduce,
after a short discussion of Uzkov’s ring of quotients, a notion o
topological quotient rng, which constitutes Chapter I. In Chapter
II, we introduce semi-local rings in our generalized sense. They
enjoy, besides some other properties, most of the propositions n
[1]; an exception is the assertion that R s a complete semi-local
ring with the intersection of all maximal ideals and if R’ s a

ring such as (1) R’ contains R as a subring and (2) /R’-(0}, then

there exists re(n) for each n such as mR’[Rm (a part of
Proposition 4, II, 1). Appendix gives some supplementary remarks
concerning our generalized notions.

We list the correspondences between the assertions in the
present paper and those in [1, II] or [3, Part I]:

Throughout ths paper, a ring means a commutative ring with
the identity element. Under a subring we mean a subring having
the same identity. We will say that a s integral over a ring R f
a satisfies a suitable monic equation with coefficients n R. O de-
notes the empty set.

1) The number in brackets refers to the bibliography at the end.
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Chapter I. Rings of Quotients 2).

1. Ras
Definition 1. Let R be a ring and S a subset of R closed under

multiplication and not containing zero. Let a be an ideal such as
S+a/a has no zero divisor in R/a. Then we denote by Ras the
ring of quotients of S+a/a with respect to R/a. (Throughout this
paper we maintain the meanings of R and S).

Definition . Let I be an ideal in R and Is an ideal in Ras.
Then we denote by IRas the ideal (I)Ras in R,s and by IsR
the ideal -l(IsR/a), where is the natural homomorphism of R
into R/a.

We see readily-
( 1 ) (IsR)Rs=Is for every ideal Is in R.
(2) (II)R=(5R)(IR) for any two ideals Is and

I in R.
(3) Let p be a prime ideal in R and q a primary ideal be-

longing to p. Then (a) if oSO we have qSO and
=Ras; (b) if oS=O and qa, qRaz is a primary ideal belonging
to oRs, furthermore, pR,R=o and qRzR=q; q is strongly
primary if and only if qR is so.

(4) If I=qx is an intersection of primary ideals qx in R and

if I, we have

(5) If I=q is an intersection of primary ideals q in R and
if q or qSO for each i, we have IR=qRz. If the in-
tersection q is irredundant, it gives again an irredundant intersec-

tion when the components qR,=R are omitted.

2) Except in the definition of topological kernel of R (Definition 5), we need
not assume the existence of the identity in R, throughout this Chapter.
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2. Rings of quotients (cf. [6]).
Definition 3. Let U-- {a e R as=O for some s e S}. Then we

call Rz the ring of quotients of S with respect to R, and denote
it by Rs.

Lemma 1. U is an ideal and S+U/U has no zero divisor in R/U.
(Proof) If a, b eU, as--O, bs--O for some s, seS. Hence

(a+b)ss--O, ss S. It follows that U is an ideal. If sx----O (mod.
U) (s e S, x e R), we have s’sx--O for some s’ e S. Therefore x e U.
This proves that S +U/U has no zero divisor in R/U.

Remark 1. If q is a primary ideal in R such as qfS----O, then
we have qU.

Remark . Every Rz, with allowable , is a homomorphic
image of R,v.

3. Topological quotient rings.
Lemma . Let I be an ideal which does not meet S. Then

there exists an ideal p such as pI, O[S=O and every ideal prop-
erly containing p meets S. p is necessarily a prime ideal.

(Proof) The existence of p can be proved by Zorn’s Lemma,
and p is prime because S is closed under multiplication.

Definition . The ideal p in Lemma 2 is called a maximal ideal
with respect to S.

Definition 5. Let {p; e A} be the totality of maximal ideals
in R with respect to S. We call the intersection Dz of all strongly
primary ideals belonging to some p( A) the topological kernel of S
with respect to R. When S---{1}, we call D, the topological kernel
of R.

Lemma . Let D be an intersection of some primary ideals
which do not meet S. Then S+D/D has no zero divisor in RID.

(Proof) Trivial.
Definition 6. Let Ds be the topological kernel of S with respect

to R. Then we call Rs the topological quotient ring of S with
respect to R, and denote it by R:s.

Note When S is the complementary set of a prime ideal p,
we use "of p" in place of "of S" and we use the notations Ro and
Ro in place of Rs and R, respectively.

Chapter II. Semi.Local Rings.

1. Generalized semi-local rings.

Definition 1. A generalized semi-local ring is a ring whose
topological kernel is (0). In any generalized semi-local ring R a
topology can be introduced by taking ideals m(), m(), to be neigh-
bourhoods of zero, where m()is the intersection of all n-th power
of maximal ideals. This is the natural topology of generalized semi-
local ring.
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Definition 2. A semi-local ring is a generalized semi-local ring
which has only a finite number of maximal ideals.

Local rings, which were already defined in [8], may be defined
as follows

Definition 3. A local ring is a semi-local ring which has only
one maximal ideal.

Proposition 1. A generalized semi-local ring R is a subring of
the direct sum of R ( e A) where {p A} is the totality of
maximal ideals in R. If we introduce in the direct sum the strong
topology of product space, then R becomes its subspace.

(Proof) Trivial.
Proposition 2. A generalized semi-local ring has a completion

R. R is again a generalized semi-local ring. If and are two
distinct maximal ideals in R, /R and ./R are distinct maximal
ideals in R. There exists an inclusion preserving one-to-one cor-
respondence between all of closed ideals in R and some of closed
ideals in ; if a and correspond to each other, /R--a and the
closure of aR in R is .

(Proof) This follows from the general theory of completion of
topological ring.

Remark. If R is a semi-local ring, R is also a semi-local ring.

If R is a local ring, R is also a local ring.

Proposition 3. Let be the completion of a generalized semi-
local ring R. If an element u of R is not a zero divisor in R and
if every u m () is closed in R, it is not in R either.

(Proof) Let uv=O (v e R). We take a sequence (v.) such that
v-v e m(). uv un(), and we have v e m() because u is not a zero
divisor in R. Hence v=0.

2. Semi-local rings.
Let, throughout this section, R be a semi-local ring and m be

the intersection of all maximal ideals p, ..., p in R.
Proposition 4. Let a,..., a be h elements in R. Then the

system xa (rood. p) (i--1, 2,..., h) is solvable, and all the solu-
tions are congruent modulo m.

(Proof) Let a---/p. Then a +O--R. Let e, be an element

of a7 such as e,l (mod. pT). With such e, (i=1,2, ..-,h) we

have that x= e,,a is a solution. If x’ is another solution, we
/l

h, h l,

have (x’-x). e,-O (mod. m). e, s a unit, because e,l
i=1 il

(mod. p) for every j (9"=1, 2, ..-, h). Therefore x’-x-O (mod. m).
Proposition 5. If R is complete, there exists a system of idem-

potent elements {e i=1, 2, ..., h} such as ep, ep if i==j,
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=1, =0 if j=[=-i and R is isomorphic with R=R.
i=l

(Proof) Take e. ia the proof of Propositioa 3. The h se-
quences (e,) (i=1, 2,..., h) are convergent. Their limits e fulfills
our requirement.
Remark. This proposition shows that R-=R+... +R (direct

sum), R being local ring with as identity, and R is also the
product space of Rs.

Proposition 6. Let R be the completion of R. Then R ex-
plained in Proposition 5 is isomorphic with the completion of Rv
where p is the intersection of R and the maximal ideal which cor-
responds to e.

(Proof) If we observe the fact that the kernel of natural

homomorphism of R into R is (p, Proposition 6 follows from

Proposition 5.
Proposition 7 ). A semi-local ring R is Noetherian if and only

if (1) every ideal is closed and (2) every maximal ideal has a finite
basis.

(Proof) If R is Noetherian and if a is an ideal in R, R/a is
clearly semi-local. Therefore a is closed. Converse follows rom
Propositions 2 and 5 and the fact that a complete local ring whose
maximal ideal has a finite basis is Noetherian" [8, Corollary to
Proposition 2], [3, Theorem 3].

We mention by the way also.
Proposition 8. A local ring R whose maximal ideal is principal

ideal (x) is a Noetherian local ring.

(Proof) Observe the fact that every ideal but (0) is an ideal
generated by x for some n.

3. Some further properties.
Lemma 1% An element a is integral over a ring R if and only

if there exists a ring R’ such as (1) R’ contains R as a subring,

(2) R’ is a finite R-module and (3) R’- a.

(Proof) If a is integral over R, R’--R[a] satisfies three conditions
above. Conversely, if R’ is such a ring as above, we can se
R’= Ry with y=l. Then we have ay= auy (au eR, i--1, 2,

i= J=

-., h). If we set f(a):la-al, f(a) is a monic polynomial on
a with coefficients in R. We have f(a)y=O (i=1, 2, ..., h). There-
fore f(a)=O.

3) We can exclude neither of these 2 conditions: It is clear that we cannot
exclude the condition (1) the example in Appendix (2) of [8] shows that we cannot
exclude the condition (2).

4) I owe this proof to Prof. G. Azumuya.
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This being said, we shall also make use of the following lemma
due to Cohen and Seidenberg (cf. Theorem 2, 1, [4])).

Lemma . Let R’ be integral over a ring R. Then for every
prime ideal p in R there exists a prime ideal in R’ such as
fR=p.

Corollary. Let R’ be a ring containing R as a subring and
which is a finite R-module. Let a be an ideal in R. Then R’=R’.
Proposition 9*. Let R be a semi-local ring. Let R’ be a ring
containing R as a subring and finite over R. Then R’ is a semi-
local ring and R is a subspace of R’. If R is complete, R’ is also
complete.

(Proof) Let be a maximal ideal in R’, fR is a maximal
ideal in R. If p is a maximal ideal in R, then R’/oR’ is a finite
module over the field Rip. This shows that there exists only a finite
number of (maximal) ideals in R’, say , ..., and that (...)
_oR’ for some k. This proves the first part of our assertion.
Now, let R be complete. Let (v.)(n--l, 2,...) be a convergent se-

quence in R’. We set R’= Rye. Then we write v,-v,_-- u,,y
l=l

where u,. are elements of the intersection of all m(n)-th powers
of maximal ideals with m(n) and v0=0. Then (u,,) (n=l, 2, ---)
(j--l, 2, ..., m) are m convergent sequences in R. Let a be their
limits respectively. Then ayj is the limit of the sequence (v.).
This proves the second part of our assertion.

Proposition 10. Let R be a complete semi-local ring (with
maximal ideals p,..., p). If R’ is a ring which contains R as a

subring in which fm’R’=(0) (where m=fp), then mR’fR=m.
n=l

Furthermore, if R’/mR is a finite R/m-module, R’ is a finite R-
module, whence R’ is also a complete semi-local ring by Proposition 9.

(Proof) It is clear that mR[Rm. If mR’/R=m, there
exists at least one maximal ideal, say p, such as pR’=R’. Then we
have mR’=(pf...fp)’R’, contrary to our assumption. So neces-
sarily mR’fR=m. Now we assume that R’/mR’ is a finite R/ta-

d

module. We set R’/R’= (R/m)v and choose for each i an element

v from v*. Let x be any element of R’. We construct d se-
d

quences (x,.) (i=1, 2, ..., d n=0, 1,...) such as xx.,v (mod.
mR’). We set x.0--0 for each i. If x, (i--1,--., d) are already

defined, we write x-x,,v= y$ with y e R’, $ e m. Then
k=l

5) The proof can be simplified if we make use of the notion of the rings of
quotients.

* See Correction at the end.
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we can write y-y,v (mod. m/’) (y, R). We set
/V

+y,$ (i--1, ..., d). Then each (x,) is convergent in R; let x
be its limit (i=1, ..., d), and set x’= xv. Then x’-x m’R for

every n, namely, x’=x. Therefore R’=Rv.
Proposition 11. Let R and R’ be two semi-local rings such that R’

contains R as a subring and a subspace and is a finite R-module. Let
R and R’ be the completions of R and R’ respectively. Then, if

R’=Ry, R’=Ry (up to an isomorphism).
1=1 1=1

(Proof) Since R is a subspace of R’, R is also a subsapace
of ’. So we can coider as the closure of R in ’. Then our
assertion follows from the fact that Ry is a complete semi-local
ring.

Proposition 12. If we assume, besides the assumption in Pro-
position 11, that R has no zero divisor in R’, we have, (1) if ele-
ments x,-.., x of R’ are linearly independent over R, they are
so over , (2) if an element u of is a zero divisor in ’, it is
already so in .

(Proof) We can assume without loss of generality that Xl,...,

x is a maximal system of linearly independent elements. Then

we can find an element c of R such that cR’Rx (cO). If

ux=O (u e R) we choose m sequences (u,,)(i=l,..., m) such as
i=1

lim u,,=u and cu.,x e m"x, namely, cu,,x a,,x, a,, m",

where m is the intersection of all maximal ideals in R. Since x,
.., x are linearly independent, we have cu,,=a,,, namely cu,,,

whence cu=O (for every i). We have u=0 for every i. Let next
an element u of R be not a zero divisor in R. Assume uv=O (v e R’).
We can write cv= ax (a e R). Hence, uax=O and therfore

ua=O (lim). Then we have a=0 (l<m). So, cv=O and
v=0.

Proposition 13. Let q be an ideal in a semi-local ring R. Then
R/q is again a semi-local ring if and only if q is closed in R. Let,
when this is the case, be the closure of q in the completion R of
R. Then R is the completion of R/q.

(Proof) The first part is evident, while the second follows
from Proposition 2.

Proposition 1. Let R be a semi-local ring with maximal
ideals p,..., p (h>l). Then there exists an element u such as
uep...p and uCp for j>r, where

(Proof) Trivial.



138 M. NAGATA. [Vo]. 26,

Proposition 15. Let R be a semi-local ring with maximal ideals
p,..., p. If R is a subdirect sum of Ro, R is the direct sum of

(Proof) When h=l, our assertion is trivial. We will assume
that h>l and our assertion holds for semi-local rings with h-1
maximal ideals. We set Ro-----R. Then a--RQ(R+..-+R) is an
ideal in R. Further, R/a=R by natural mapping. Let u be an
element of R such as u tp, and Ulp for any jl. The
residue class of u module a is a unit in R. Therefore if we write

u=v+... +v (ve R), we can assume that v--e where e is the
image of 1 in R and it is true that vpR for any jl. Then
ve (mod. a), where is the image of 1 in R, because 1--e+...

k

+,e. u----1-u- (e-v) a. u is a unit in R+--. +R. Let b
be the inverse element of u in R+..-+R. Then there exists an
element b----c +b e R, c R for R/R(R is a semi-local ring with
h-1 maximal ideals. Then bu--,+... +. Therefore 1-(e,+--.
+)= R. Therefore RR R/R--R, +... +R. This proves
our assertion.

It seems to me very likely that if a complete semi-local ring
R’ contains a (semi-local)ring R as a subring and is a finite R-
module, then R is complete. But I have been able to prove only
some special case as follows"

Lemma 3. Let R be a Noetherian semi-local ring having no
zero divisor. If there exists a complete semi-local ring R’ which
contains R as a subring and is a finite R-module, then R is complete.

(Proof) The completion of R is then a finite R-module. Let
u be an element of _. Then 1, u are linearly dependent over R,
by Proposition 12. Therefore au-fl (a==0) or some a,/9 e R. Since
R is Noetherian, aR is closed. Therefore aR- ft. Since a is not a
zero divisor in (by Proposition 3), u R.

Proposition 16a. Let R and R’ be two semi-local rings such as
(1) R is a direct sum of a finite nubmer of Noetherian semi-local
rings, each of which has no zero divisor, (2)R’ contains R as a
subring and (3) R’ is a finite R-module. Then R is complete if
(and only if) R’ is.

(Proof) This iollows immediately from Lemma 3.
Proposition 16b. Let R and R’ be two semi-local rings such as

(1) R’ contains R as a subring and (2) R’ has a linearly independent
basis {y=l, y, ..., y} over R. Then R is closed in R’. Therefore
R is complete if any only R’ is.

(Proof) This follows readily from the fact that R is a subspace
of R’.

Remark. If a ring R is a subring of a semi-local ring R’ which
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is integral over R (or, as a special case, finite over R), then R is
a semi-local ring.

Appendix.

Proposition 17. If D is the topological kernel of R, then
R/D=R.

(Proof) Trivial.
Therefore (1)Rz is a generalized semi-local ring and (2) if

R is a generalized semi-local ring, R=Rz.
Proposition 18. Let R be a Noetherian ring. If the family of

maximal ideals with respect to S is finite, Rz=R.
(Proof) Let p, ..., p be all the maximal ideals with respect

to S. Then R is a Noetherian ring having no maximal ideals
other than pR, ..., pR. Therefore Rs is a Noetherian semi-local
ring.

Proposition 19. A necessary and sufficient condition for a ring
R to be a subring of a generalized semi-local ring is that zero ideal
is an intersection of some strongly primary ideals.

(Proof) If (0) is the intersection of strongly primary ideals
q( eI)belonging to p respectively, then R is a subring of the
direct sum of all R. Conversely, if R is a subring of a generaliz-
ed semi-local ring R’, (0) in R is an intersection of strongly primary
ideals because (0) in R’ is so.
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Correction.

Read Proposition 9 as follows:
Proposition 9. Let R be a semi-local ring and let R’ be a ring

containing R as a subring and which is a finite R-module. Then
(I) R’ possesses only a finite number of maximal ideals. (II) If
there exist elements c e R, x, ..., x e R’ such that c is not a zero
divisor in R’ and x0=l, x, ..., x are linearly independent over R
and that cR’Rx, then R is a semi-local ring. (III) If R’
possesses a linearly independent module basis over R, R is a closed
subspace of R’ (by virtue of (II), R’ is a semi-local ring). (IV) If
R’ s semi-local and if R is complete, then R’ is also complete.


