24. On the Theory of Semi-Local Rings.

By Masayoshi NAGATA.

(Comm. by Z. SUETUNA, M.J.A., May 12, 1950.)

Introduction.

The concept of local ring was introduced by Krull [7]¹⁾. That of semi-local ring, a generalization of local ring, was introduced by Chevalley [1]. It was defined namely as a Noetherian ring Rpossessing only a finite number of maximal ideals. If m denotes the intersection of all maximal ideals in a semi-local ring R, then $\bigcap_{n} \mathfrak{m}^n = (0)$, and so, R becomes a topological ring with $\{\mathfrak{m}^n\}$ as a system of neighbourhoods of zero. Chevalley derived many properties by making use of the concept of ring of quotients introduced by Grell [5]. He also introduced, in [2], a generalization of ring of quotients, in order to generalize Proposition 8, § II, [1]. But this generalization was only with respect to a Noetherian ring and the complementary set of a prime ideal. A further, and very natural, generalization of the concept of ring of quotients was given by Uzkov [6]. But it seems to me that also this generalization is not convenient to be applied to a generalized theory of semi-local rings which I want to present in the following. So we first introduce, after a short discussion of Uzkov's ring of quotients, a notion of topological quotient ring, which constitutes Chapter I. In Chapter II, we introduce semi-local rings in our generalized sense. They enjoy, besides some other properties, most of the propositions in [1]; an exception is the assertion that R is a complete semi-local ring with the intersection m of all maximal ideals and if R' is a ring such as (1) R' contains R as a subring and (2) $\int_{n=1}^{\infty} mR' = (0)$, then there exists m(n) for each n such as $\mathfrak{m}^{m(n)}R' \cap R \subseteq \mathfrak{m}^n$ (a part of Proposition 4, II, 1). Appendix gives some supplementary remarks concerning our generalized notions.

We list the correspondences between the assertions in the present paper and those in [1, § II] or [3, Part I]:

Throughout this paper, a ring means a commutative ring with the identity element. Under a subring we mean a subring having the same identity. We will say that α is integral over a ring R if α satisfies a suitable monic equation with coefficients in R. θ denotes the empty set.

¹⁾ The number in brackets refers to the bibliography at the end.

The present paper	Chevalley [1, § II]	Cohen [3, Part I]
Proposition 2	Theorem 1	Theorems 1, 2
Proposition 3	Proposition 6	
Proposition 4	Lemma 3	
Proposition 5	Proposition 2	
Proposition 6	Proposition 8	
Corollary to Lemma 2	Lemmas 4, 5	
Proposition 9	Proposition 3	The last part of Theorem 7
Proposition 10	Proposition 4	Corollary to Theorem 8
Propositions 11, 12	Proposition 7	
Proposition 13	Propositions 1, 5	
Proposition 16b		Lemma 4

Table

Chapter I. Rings of Quotients²⁾.

1. $R_{\mathfrak{a}_S}$

Definition 1. Let R be a ring and S a subset of R closed under multiplication and not containing zero. Let a be an ideal such as S+a/a has no zero divisor in R/a. Then we denote by Ra_s the ring of quotients of S+a/a with respect to R/a. (Throughout this paper we maintain the meanings of R and S).

Definition 2. Let I be an ideal in R and I_s an ideal in R_{a_s} . Then we denote by IR_{a_s} the ideal $\varphi(I)R_{a_s}$ in R_{a_s} and by $I_s \supset R$ the ideal $\varphi^{-1}(I_s \cap R/a)$, where φ is the natural homomorphism of R into R/a.

We see readily :

(1) $(I_s \cap R)R_{a_s} = I_s$ for every ideal I_s in R_{a_s} .

(2) $(I_{s_1} \cap I_{s_2}) \cap R = (I_{s_1} \cap R) \cap (I_{s_2} \cap R)$ for any two ideals I_{s_1} and I_{s_2} in $R_{\mathfrak{a}_s}$.

(3) Let \mathfrak{p} be a prime ideal in R and \mathfrak{q} a primary ideal belonging to \mathfrak{p} . Then (a) if $\mathfrak{p} \cap S = \theta$ we have $\mathfrak{q} \cap S = \theta$ and $\mathfrak{p} R_{\mathfrak{a}_S} = \mathfrak{q} R_{\mathfrak{a}_S}$ $= R_{\mathfrak{a}_S}$; (b) if $\mathfrak{p} \cap S = \theta$ and $\mathfrak{q} \supseteq \mathfrak{a}$, $\mathfrak{q} R_{\mathfrak{a}_S}$ is a primary ideal belonging to $\mathfrak{p} R_{\mathfrak{a}_S}$, furthermore, $\mathfrak{p} R_{\mathfrak{a}_S} \cap R = \mathfrak{p}$ and $\mathfrak{q} R_{\mathfrak{a}_S} \cap R = \mathfrak{q}$; \mathfrak{q} is strongly primary if and only if $\mathfrak{q} R_{\mathfrak{a}_S}$ is so.

(4) If $I = \bigcap_{\lambda \in \Lambda} q_{\lambda}$ is an intersection of primary ideals q_{λ} in R and if $I \supseteq q$, we have $IR_{a_S} = \bigcap_{\lambda \in \Lambda} q_{\lambda}R_{a_S}$. (5) If $I = \bigcap_{i=1}^{m} q_i$ is an intersection of primary ideals q_i in R and

(5) If $I = \bigcap_{i=1}^{m} q_i$ is an intersection of primary ideals q_i in R and if $q_i \supseteq a$ or $q_i \bigwedge S = \theta$ for each i, we have $IR_{a_S} = \bigcap_{i=1}^{m} q_i R_{a_S}$. If the intersection $\bigcap_{i=1}^{m} q_i$ is irredundant, it gives again an irredundant intersection when the components $q_i R_{a_S} = R_{a_S}$ are omitted.

²⁾ Except in the definition of topological kernel of R (Definition 5), we need not assume the existence of the identity in R, throughout this Chapter.

2. Rings of quotients (cf. [6]).

Definition 3. Let $U = \{a \in R; as = 0 \text{ for some } s \in S\}$. Then we call R_{US} the ring of quotients of S with respect to R, and denote it by R_s .

Lemma 1. U is an ideal and S+U/U has no zero divisor in R/U.

(Proof) If $a, b \in U$, $as_1=0$, $bs_2=0$ for some $s_1, s_2 \in S$. Hence $(a+b)s_1s_2=0$, $s_1s_2 \in S$. It follows that U is an ideal. If $sx\equiv 0 \pmod{U}$ ($s \in S, x \in R$), we have s'sx=0 for some $s' \in S$. Therefore $x \in U$. This proves that S+U/U has no zero divisor in R/U.

Remark 1. If q is a primary ideal in R such as $q \cap S = \theta$, then we have $q \supseteq U$.

Remark 2. Every R_{α_s} , with allowable α , is a homomorphic image of R_s .

3. Topological quotient rings.

Lemma 2. Let I be an ideal which does not meet S. Then there exists an ideal \mathfrak{p} such as $\mathfrak{p} \supseteq I$, $\mathfrak{p} \cap S = \theta$ and every ideal properly containing \mathfrak{p} meets S. \mathfrak{p} is necessarily a prime ideal.

(Proof) The existence of p can be proved by Zorn's Lemma, and p is prime because S is closed under multiplication.

Definition 4. The ideal p in Lemma 2 is called a maximal ideal with respect to S.

Definition 5. Let $\{\mathfrak{p}_{\lambda}; \lambda \in A\}$ be the totality of maximal ideals in R with respect to S. We call the intersection D_{S} of all strongly primary ideals belonging to some $\mathfrak{p}_{\lambda}(\lambda \in A)$ the topological kernel of Swith respect to R. When $S = \{1\}$, we call D_{S} the topological kernel of R.

Lemma 4. Let D be an intersection of some primary ideals which do not meet S. Then S+D/D has no zero divisor in R/D.

(Proof) Trivial.

Definition 6. Let D_S be the topological kernel of S with respect to R. Then we call R_{D_SS} the topological quotient ring of S with respect to R, and denote it by $R_{(S)}$.

Note: When S is the complementary set of a prime ideal \mathfrak{p} , we use "of \mathfrak{p} " in place of "of S" and we use the notations $R_{\mathfrak{p}}$ and $R_{\mathfrak{p}}$ in place of R_s and $R_{\mathfrak{s}}$ respectively.

Chapter II. Semi-Local Rings.

1. Generalized semi-local rings.

Definition 1. A generalized semi-local ring is a ring whose topological kernel is (0). In any generalized semi-local ring R a topology can be introduced by taking ideals $\mathfrak{m}^{(1)}, \mathfrak{m}^{(2)}, \ldots$ to be neighbourhoods of zero, where $\mathfrak{m}^{(n)}$ is the intersection of all *n*-th power of maximal ideals. This is the natural topology of generalized semi-local ring.

No. 5.]

Definition 2. A semi-local ring is a generalized semi-local ring which has only a finite number of maximal ideals.

Local rings, which were already defined in [8], may be defined as follows;

Definition 3. A local ring is a semi-local ring which has only one maximal ideal.

Proposition 1. A generalized semi-local ring R is a subring of the direct sum of $R_{\mathfrak{l}\mathfrak{P}_{\lambda \mathfrak{l}}}$ ($\lambda \in \Lambda$) where $\{\mathfrak{p}_{\lambda}; \lambda \in \Lambda\}$ is the totality of maximal ideals in R. If we introduce in the direct sum the strong topology of product space, then R becomes its subspace.

(Proof) Trivial.

Proposition 2. A generalized semi-local ring has a completion \overline{R} . \overline{R} is again a generalized semi-local ring. If $\overline{\mathfrak{p}}_1$ and $\overline{\mathfrak{p}}_2$ are two distinct maximal ideals in \overline{R} , $\overline{\mathfrak{p}}_1 \cap R$ and $\overline{\mathfrak{p}}_2 \cap R$ are distinct maximal ideals in R. There exists an inclusion preserving one-to-one correspondence between all of closed ideals in R and some of closed ideals in \overline{R} ; if a and $\overline{\mathfrak{a}}$ correspond to each other, $\overline{\mathfrak{a}} \cap R = \mathfrak{a}$ and the closure of $a\overline{R}$ in \overline{R} is $\overline{\mathfrak{a}}$.

(Proof) This follows from the general theory of completion of topological ring.

Remark. If R is a semi-local ring, \overline{R} is also a semi-local ring. If R is a local ring, \overline{R} is also a local ring.

Proposition 3. Let \overline{R} be the completion of a generalized semilocal ring R. If an element u of R is not a zero divisor in R and if every $u m^{(n)}$ is closed in R, it is not in \overline{R} either.

(Proof) Let uv=0 ($v \in \overline{R}$). We take a sequence (v_n) such that $v-v_n \in \mathfrak{m}^{(n)}$. $uv_n \in u\mathfrak{m}^{(n)}$, and we have $v_n \in \mathfrak{m}^{(n)}$ because u is not a zero divisor in R. Hence v=0.

2. Semi-local rings.

Let, throughout this section, R be a semi-local ring and \mathfrak{m} be the intersection of all maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_h$ in R.

Proposition 4. Let a_1, \dots, a_h be h elements in R. Then the system $x \equiv a_i \pmod{\mathfrak{p}_i^n}$ $(i=1, 2, \dots, h)$ is solvable, and all the solutions are congruent modulo \mathfrak{m}^n .

(Proof) Let $a_i = \bigcap_{j \neq i} p_j$. Then $a_i^n + p_i^n = R$. Let $e_{i,n}$ be an element of a_i^n such as $e_{i,n} \equiv 1 \pmod{p_i^n}$. With such $e_{i,n}$ $(i=1, 2, \dots, h)$ we have that $x = \sum_{i=1}^{h} e_{i,n} a_i$ is a solution. If x' is another solution, we have $(x'-x) \sum_{i=1}^{h} e_{i,n} \equiv 0 \pmod{m^n}$. $\sum_{i=1}^{h} e_{i,n}$ is a unit, because $\sum_{i=1}^{h} e_{i,n} \equiv 1 \pmod{p_i}$ for every j $(j=1, 2, \dots, h)$. Therefore $x'-x \equiv 0 \pmod{m^n}$.

Proposition 5. If R is complete, there exists a system of idempotent elements $\{\varepsilon_i; i=1, 2, \dots, h\}$ such as $\varepsilon_i \notin \mathfrak{p}_i, \varepsilon_i \in \mathfrak{p}_j$ if $i \neq j$,

 $\sum_{i=1}^{h} \varepsilon_{i} = 1, \ \varepsilon_{i} \varepsilon_{j} = 0 \ \text{if} \ j \neq i \ \text{and} \ R_{\varepsilon_{i}} \ \text{is isomorphic with} \ R_{(\mathfrak{p}_{i})} = R_{\mathfrak{p}_{i}}.$

(Proof) Take $e_{i,n}$ in the proof of Proposition 3. The *h* sequences $(e_{i,n})$ $(i=1, 2, \ldots, h)$ are convergent. Their limits ε_i fulfills our requirement.

Remark. This proposition shows that $R = R_{\varepsilon_1} + \cdots + R_{\varepsilon_h}$ (direct sum), R_{ε_i} being local ring with ε_i as identity, and R is also the product space of R_{ε_i} .

Proposition 6. Let \overline{R} be the completion of R. Then $\overline{R}_{\epsilon_i}$ explained in Proposition 5 is isomorphic with the completion of $R_{[\mathfrak{P}_i]}$ where \mathfrak{p}_i is the intersection of R and the maximal ideal which corresponds to ϵ_i .

(Proof) If we observe the fact that the kernel of natural homomorphism of R into $\overline{R}_{\varepsilon_i}$ is $\bigcap_{n=1}^{\infty} \mathfrak{p}_i^n$, Proposition 6 follows from Proposition 5.

Proposition 7³⁾. A semi-local ring R is Noetherian if and only if (1) every ideal is closed and (2) every maximal ideal has a finite basis.

(Proof) If R is Noetherian and if a is an ideal in R, R/a is clearly semi-local. Therefore a is closed. Converse follows from Propositions 2 and 5 and the fact that a complete local ring whose maximal ideal has a finite basis is Noetherian: [8, Corollary to Proposition 2], [3, Theorem 3].

We mention by the way also.

Proposition 8. A local ring R whose maximal ideal is principal ideal (x) is a Noetherian local ring.

(Proof) Observe the fact that every ideal but (0) is an ideal generated by x^n for some n.

3. Some further properties.

Lemma 1⁴). An element a is integral over a ring R if and only if there exists a ring R' such as (1) R' contains R as a subring, (2) R' is a finite R-module and (3) $R' \ni a$.

(Proof) If a is integral over R, R'=R[a] satisfies three conditions above. Conversely, if R' is such a ring as above, we can set $R'=\sum_{i=1}^{h}Ry_i$ with $y_1=1$. Then we have $ay_i=\sum_{j=1}^{h}a_{ij}y_j$ $(a_{ij}\in R, i=1, 2, \dots, h)$. If we set $f(a)=|a\delta_{ij}-a_{ij}|$, f(a) is a monic polynomial on a with coefficients in R. We have $f(a)y_i=0$ $(i=1, 2, \dots, h)$. Therefore f(a)=0.

No. 5.]

³⁾ We can exclude neither of these 2 conditions: It is clear that we cannot exclude the condition (1); the example in Appendix (2) of [8] shows that we cannot exclude the condition (2).

⁴⁾ I owe this proof to Prof. G. Azumaya.

This being said, we shall also make use of the following lemma due to Cohen and Seidenberg (cf. Theorem 2, $\S 1$, $[4]^{5}$).

Lemma 2. Let R' be integral over a ring R. Then for every prime ideal \mathfrak{p} in R there exists a prime ideal \mathfrak{P} in R' such as $\mathfrak{P} \cap R = \mathfrak{p}$.

Corollary. Let R' be a ring containing R as a subring and which is a finite R-module. Let a be an ideal in R. Then $aR' \neq R'$. Proposition 9*. Let R be a semi-local ring. Let R' be a ring containing R as a subring and finite over R. Then R' is a semi-local ring and R is a subspace of R'. If R is complete, R' is also complete.

(Proof) Let \mathfrak{P} be a maximal ideal in $R', \mathfrak{P} \cap R$ is a maximal ideal in R. If \mathfrak{p} is a maximal ideal in R, then $R'/\mathfrak{p}R'$ is a finite module over the field R/\mathfrak{p} . This shows that there exists only a finite number of (maximal) ideals in R', say $\mathfrak{P}_1, \dots, \mathfrak{P}_r$ and that $(\mathfrak{P}_1 \dots \mathfrak{P}_r)^k \subseteq \mathfrak{p}R'$ for some k. This proves the first part of our assertion. Now, let R be complete. Let $(v_n) (n=1,2,\cdots)$ be a convergent sequence in R'. We set $R' = \sum_{i=1}^m Ry_i$. Then we write $v_n - v_{n-1} = \sum_j u_{n,j}y_j$ where $u_{n,j}$ are elements of the intersection of all m(n)-th powers of maximal ideals with $m(n)\uparrow\infty$ and $v_0=0$. Then $(u_{n,j}) (n=1,2,\cdots)$ $(j=1,2,\cdots,m)$ are m convergent sequences in R. Let a_j be their limits respectively. Then $\sum_j a_j y_j$ is the limit of the sequence (v_n) . This proves the second part of our assertion.

Proposition 10. Let R be a complete semi-local ring (with maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_h$). If R' is a ring which contains R as a subring in which $\bigcap_{n=1}^{\infty} \mathfrak{m}^n R' = (0)$ (where $\mathfrak{m} = \bigcap_{i=1}^{h} \mathfrak{p}_i$), then $\mathfrak{m} R' \cap R = \mathfrak{m}$. Furthermore, if $R'/\mathfrak{m} R'$ is a finite R/\mathfrak{m} -module, R' is a finite R-module, whence R' is also a complete semi-local ring by Proposition 9.

(Proof) It is clear that $\mathfrak{m}R' \cap R \supseteq \mathfrak{m}$. If $\mathfrak{m}R' \cap R \models \mathfrak{m}$, there exists at least one maximal ideal, say \mathfrak{p}_1 , such as $\mathfrak{p}_1R' = R'$. Then we have $\mathfrak{m}^n R' = (\mathfrak{p}_2 \cap \cdots \cap \mathfrak{p}_k)^n R'$, contrary to our assumption. So necessarily $mR' \cap R = \mathfrak{m}$. Now we assume that $R'/\mathfrak{m}R'$ is a finite R/\mathfrak{m} -module. We set $R'/\mathfrak{m}R' = \sum_{i=1}^d (R/\mathfrak{m})v_i^*$ and choose for each i an element v_i from v_i^* . Let x be any element of R'. We construct d sequences $(x_{i,n})$ $(i=1, 2, \cdots, d; n=0, 1, \cdots)$ such as $x \equiv \sum_{i=1}^d x_{i,n}v_i \pmod{\mathfrak{m}^n R'}$. We set $x_{i,0}=0$ for each i. If $x_{i,n}$ $(i=1, \cdots, d)$ are already defined, we write $x - \sum_i x_{i,n}v_i = \sum_{k=1}^N y_k \xi_k$ with $y_k \in R'$, $\xi_k \in \mathfrak{m}^n$. Then

⁵⁾ The proof can be simplified if we make use of the notion of the rings of quotients.

^{*} See Correction at the end.

we can write $y_k \equiv \sum_i y_{k,i}v_i \pmod{\mathfrak{m} R'} (y_{k,i} \in R)$. We set $x_{i,n+1} = x_{i,n} + \sum_{k=1}^{N} y_{k,i}\xi_k \ (i=1,\dots,d)$. Then each $(x_{i,n})$ is convergent in R; let x_i be its limit $(i=1,\dots,d)$, and set $x' = \sum_i x_i v_i$. Then $x' - x \in \mathfrak{m}^n R'$ for every n, namely, x' = x. Therefore $R' = \sum_i Rv_i$.

Proposition 11. Let R and R' be two semi-local rings such that R' contains R as a subring and a subspace and is a finite R-module. Let \overline{R} and $\overline{R'}$ be the completions of R and R' respectively. Then, if $R' = \sum_{i=1}^{k} Ry_i, \ \overline{R'} = \sum_{i=1}^{k} \overline{Ry_i}$ (up to an isomorphism).

(Proof) Since R is a subspace of R', R is also a subspace of $\overline{R'}$. So we can consider \overline{R} as the closure of R in $\overline{R'}$. Then our assertion follows from the fact that $\sum_{i} \overline{Ry_i}$ is a complete semi-local ring.

Proposition 12. If we assume, besides the assumption in Proposition 11, that R has no zero divisor in $\overline{R'}$, we have, (1) if elements x_1, \dots, x_m of R' are linearly independent over R, they are so over \overline{R} , (2) if an element u of \overline{R} is a zero divisor in $\overline{R'}$, it is already so in \overline{R} .

(Proof) We can assume without loss of generality that x_1, \dots, x_m is a maximal system of linearly independent elements. Then we can find an element c of R such that $cR' \subseteq \sum_{i=1}^{m} Rx_i$ ($c \neq 0$). If $\sum_{i=1}^{m} u_i x_i = 0$ ($u_i \in \overline{R}$) we choose m sequences ($u_{i,n}$) ($i=1, \dots, m$) such as $\lim u_{i,n} = u_i$ and $\sum_i cu_{i,n} x_i \in \sum_i m^n x_i$, namely, $\sum_i cu_{i,n} x_i = \sum_i a_{i,n} x_i$, $a_{i,n} \in m^n$, where m is the intersection of all maximal ideals in R. Since x_1 , \dots, x_m are linearly independent, we have $cu_{i,n} = a_{i,n}$, namely $cu_{i,n} \in m^n$, whence $cu_i = 0$ (for every i). We have $u_i = 0$ for every i. Let next an element u of \overline{R} be not a zero divisor in \overline{R} . Assume uv = 0 ($v \in \overline{R'}$). We can write $cv = \sum_i a_i x_i$ ($a_i \in \overline{R}$). Hence, $\sum_i ua_i x_i = 0$ and therfore $ua_i = 0$ ($1 \le i \le m$). Then we have $a_i = 0$ ($1 \le i \le m$). So, cv = 0 and v = 0.

Proposition 13. Let q be an ideal in a semi-local ring R. Then R/q is again a semi-local ring if and only if q is closed in R. Let, when this is the case, \overline{q} be the closure of q in the completion \overline{R} of R. Then $\overline{R/q}$ is the completion of R/q.

(Proof) The first part is evident, while the second follows from Proposition 2.

Proposition 14. Let R be a semi-local ring with maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_h$ (h>1). Then there exists an element u such as $u \in \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_r$ and $u \notin \mathfrak{p}_j$ for j>r, where 0 < r < h.

(Proof) Trivial.

Proposition 15. Let R be a semi-local ring with maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_h$. If R is a subdirect sum of $R_{\mathfrak{p}_{\ell}\mathfrak{p}_\ell}$, R is the direct sum of $R_{\mathfrak{p}_{\ell}\mathfrak{p}_\ell}$.

(Proof) When h=1, our assertion is trivial. We will assume that h>1 and our assertion holds for semi-local rings with h-1maximal ideals. We set $R_{\mathfrak{p}_i} = R_i$. Then $\mathfrak{a} = R \cap (R_2 + \cdots + R_h)$ is an ideal in R. Further, $R/a=R_1$ by natural mapping. Let u_1 be an element of R such as $u \notin \mathfrak{p}_1$, and $u_1 \in \mathfrak{p}_j$ for any j > 1. The residue class of u_1 module a is a unit in R_1 . Therefore if we write $u_1 = v_1 + \cdots + v_h$ ($v_i \in R_i$), we can assume that $v_1 = \varepsilon_1$ where ε_1 is the image of 1 in R_1 and it is true that $v_j \in \mathfrak{p}_j R_j$ for any j > 1. Then $v_j \equiv \varepsilon_j \pmod{\mathfrak{a}}$, where ε_j is the image of 1 in R, because $1 = \varepsilon_1 + \cdots$ $+\varepsilon_h$. $u_2=1-u_1=\sum_{j=2}^n(\varepsilon_j-v_j)\in\mathfrak{a}$. u_2 is a unit in $R_2+\cdots+R_h$. Let b_1 be the inverse element of u_2 in $R_2 + \cdots + R_n$. Then there exists an element $b = c_1 + b_1 \in R$, $c_1 \in R$ for $R/R \cap R_1$ is a semi-local ring with h-1 maximal ideals. Then $bu_2 = \varepsilon_2 + \cdots + \varepsilon_h$. Therefore $1 - (\varepsilon_2 + \cdots + \varepsilon_h)$ Therefore $R_1 \subseteq R$; $R/R_1 = R_2 + \cdots + R_h$. This proves $+\varepsilon_{h})=\varepsilon_{1}\in R.$ our assertion.

It seems to me very likely that if a complete semi-local ring R' contains a (semi-local) ring R as a subring and is a finite R-module, then R is complete. But I have been able to prove only some special case as follows:

Lemma 3. Let R be a Noetherian semi-local ring having no zero divisor. If there exists a complete semi-local ring R' which contains R as a subring and is a finite R-module, then R is complete.

(Proof) The completion \overline{R} of R is then a finite R-module. Let u be an element of \overline{R} . Then 1, u are linearly dependent over R, by Proposition 12. Therefore $au = \beta$ (a = 0) for some $a, \beta \in R$. Since R is Noetherian, aR is closed. Therefore $aR \ni \beta$. Since a is not a zero divisor in \overline{R} (by Proposition 3), $u \in R$.

Proposition 16a. Let R and R' be two semi-local rings such as (1) R is a direct sum of a finite nubmer of Noetherian semi-local rings, each of which has no zero divisor, (2) R' contains R as a subring and (3) R' is a finite R-module. Then R is complete if (and only if) R' is.

(Proof) This follows immediately from Lemma 3.

Proposition 16b. Let R and R' be two semi-local rings such as (1) R' contains R as a subring and (2) R' has a linearly independent basis $\{y_1=1, y_2, \dots, y_r\}$ over R. Then R is closed in R'. Therefore R is complete if any only R' is.

(Proof) This follows readily from the fact that R is a subspace of R'.

Remark. If a ring R is a subring of a semi-local ring R' which

is integral over R (or, as a special case, finite over R), then R is a semi-local ring.

Appendix.

Proposition 17. If D is the topological kernel of R_s , then $R_s/D=R_{(s)}$.

(Proof) Trivial.

Therefore (1) $R_{[S]}$ is a generalized semi-local ring and (2) if R_s is a generalized semi-local ring, $R_s = R_{[S]}$.

Proposition 18. Let R be a Noetherian ring. If the family of maximal ideals with respect to S is finite, $R_s = R_{[S]}$.

(Proof) Let $\mathfrak{p}_1, \dots, \mathfrak{p}_h$ be all the maximal ideals with respect to S. Then R_s is a Noetherian ring having no maximal ideals other than $\mathfrak{p}_1 R_s, \dots, \mathfrak{p}_h R_s$. Therefore R_s is a Noetherian semi-local ring.

Proposition 19. A necessary and sufficient condition for a ring R to be a subring of a generalized semi-local ring is that zero ideal is an intersection of some strongly primary ideals.

(Proof) If (0) is the intersection of strongly primary ideals $q_{\lambda}(\lambda \in \Lambda)$ belonging to p_{λ} respectively, then R is a subring of the direct sum of all $R_{\lfloor p_{\lambda} \rfloor}$. Conversely, if R is a subring of a generalized semi-local ring R', (0) in R is an intersection of strongly primary ideals because (0) in R' is so.

Bibliography.

- C. Chevalley: On the theory of local rings, Ann. of Math. Vol. 44 (1943) pp. 690-708.
- [2] _____: On the notion of ring of quotients of a prime ideal, Bull. Amer. Math. Soc. Vol. 50 (1944).
- [3] I. S. Cohen: On the structure and ideal theory of complete local rings, Trans. Amer. Math. Vol. 59 (1946) pp. 54-106.
- [4] I. S. Cohen and A. Seidenberg: Prime ideals and integral dependence, Bull. Amer. Math. Soc. Vol. 52 (1946) pp. 252-261.
- [5] H. Grell: Beziehungen zwischen den Idealen verschiedener Ringe, Math. Ann. Vol. 97 (1927) pp. 490-523.
- [6] A. I. Uzkov: On the rings of quotients of commutative rings, Mat. Sbornik N. S. 22 (64) (1948).
- [7] W. Krull: Dimensionstheorie in Stellenringen, J. Reine Angew. Math. Vol. 179 (1938) pp. 204-226.
- [8] M. Nagata: On the structure of complete local rings, forthcoming in Nagoya Mathematical Journal.

No. 5.]

Correction.

Read Proposition 9 as follows:

Proposition 9. Let R be a semi-local ring and let R' be a ring containing R as a subring and which is a finite R-module. Then (I) R' possesses only a finite number of maximal ideals. (II) If there exist elements $c \in R$, $x_1, \ldots, x_n \in R'$ such that c is not a zero divisor in R' and $x_0=1, x_1, \ldots, x_n$ are linearly independent over Rand that $cR' \subseteq \sum_{i=0}^{n} Rx_i$, then R is a semi-local ring. (III) If R'possesses a linearly independent module basis over R, R is a closed subspace of R' (by virtue of (II), R' is a semi-local ring). (IV) If R' is semi-local and if R is complete, then R' is also complete.