24. On the Theory of Semi-Local Rings.

By Masayoshi Nagata.
(Comm. by Z. Suetuna, m.J.A., May 12, 1950.)

Introduction.

The concept of local ring was introduced by Krull [7] ${ }^{1)}$. That of semi-local ring, a generalization of local ring, was introduced by Chevalley [1]. It was defined namely as a Noetherian ring R possessing only a finite number of maximal ideals. If m denotes the intersection of all maximal ideals in a semi-local ring R, then $\bigcap_{n=1}^{\infty} \mathfrak{m}^{n}=(0)$, and so, R becomes a topological ring with $\left\{\mathfrak{m}^{n}\right\}$ as a system of neighbourhoods of zero. Chevalley derived many properties by making use of the concept of ring of quotients introduced by Grell [5]. He also introduced, in [2], a generalization of ring of quotients, in order to generalize Proposition 8, § II, [1]. But this generalization was only with respect to a Noetherian ring and the complementary set of a prime ideal. A further, and very natural, generalization of the concept of ring of quotients was given by Uzkov [6]. But it seems to me that also this generalization is not convenient to be applied to a generalized theory of semi-local rings which I want to present in the following. So we first introduce, after a short discussion of Uzkov's ring of quotients, a notion of topological quotient ring, which constitutes Chapter I. In Chapter II, we introduce semi-local rings in our generalized sense. They enjoy, besides some other properties, most of the propositions in [1]; an exception is the assertion that R is a complete semi-local ring with the intersection \mathfrak{m} of all maximal ideals and if R^{\prime} is a ring such as (1) R^{\prime} contains R as a subring and (2) $\bigcap_{n=1}^{\infty} n+R^{\prime}=(0)$, then there exists $m(n)$ for each n such as $\mathfrak{m}^{m(n)} R^{\prime} \cap R \subseteq \mathfrak{m}^{n}$ (a part of Proposition 4, II, 1). Appendix gives some supplementary remarks concerning our generalized notions.

We list the correspondences between the assertions in the present paper and those in [1, § II] or [3, Part I]:

Throughout this paper, a ring means a commutative ring with the identity element. Under a subring we mean a subring having the same identity. We will say that α is integral over a ring R if α satisfies a suitable monic equation with coefficients in R. θ denotes the empty set.

[^0]Table

The present paper	Chevalley [1, § II]	Cohen [3, Part I]
Proposition 2	Theorem 1	Theorems 1, 2
Proposition 3	Proposition 6	
Proposition 4	Lemma 3	
Proposition 5	Proposition 2	
Proposition 6	Proposition 8	
Corollary to Lemma 2	Lemmas 4, 5	The last part of Theorem 7
Proposition 9	Proposition 3	Corollary to Theorem 8
Proposition 10	Proposition 4	
Propositions 11, 12	Proposition 7	
Proposition 13	Propositions 1, 5	Lemma 4
Proposition 16b		

Chapter I. Rings of Quotients ${ }^{2}$.

1. $R_{a_{s}}$

Definition 1. Let R be a ring and S a subset of R closed under multiplication and not containing zero. Let \mathfrak{a} be an ideal such as $S+\mathfrak{a} / \mathfrak{a}$ has no zero divisor in R / \mathfrak{a}. Then we denote by $R_{\mathfrak{a}_{S}}$ the ring of quotients of $S+\mathfrak{a} / \mathfrak{a}$ with respect to R / \mathfrak{a}. (Throughout this paper we maintain the meanings of R and S).

Definition 2. Let I be an ideal in R and I_{S} an ideal in $R_{\mathrm{a}_{S}}$. Then we denote by $I R_{a_{S}}$ the ideal $\varphi(I) R_{\mathfrak{a}_{S}}$ in $R_{\mathfrak{a}_{S}}$ and by $I_{S} \supset R$ the ideal $\varphi^{-1}\left(I_{S} \cap R / \mathfrak{a}\right)$, where φ is the natural homomorphism of R into $R /$ a.

We see readily :
(1) $\left(I_{S} \cap R\right) R_{\mathrm{a}_{S}}=I_{S}$ for every ideal I_{S} in $R_{\mathrm{a}_{S}}$.
(2) $\left(I_{S 1} \cap I_{S 2}\right) \cap R=\left(I_{S 1} \cap R\right) \cap\left(I_{S 2} \cap R\right)$ for any two ideals $I_{S 1}$ and $I_{S 2}$ in $R_{a_{S}}$.
(3) Let \mathfrak{p} be a prime ideal in R and \mathfrak{q} a primary ideal belonging to \mathfrak{p}. Then (a) if $\mathfrak{p} \cap S \neq \theta$ we have $\mathfrak{q} \cap S \neq \theta$ and $\mathfrak{p} R_{\mathfrak{a}_{S}}=\mathfrak{q} R_{\mathfrak{a}_{S}}$
 to $\mathfrak{p} R_{\mathfrak{a}_{S}}$, furthermore, $\mathfrak{p} R_{\mathfrak{a}_{S}} \cap R=\mathfrak{p}$ and $\mathfrak{q} R_{a_{S}} \cap R=\mathfrak{q} ; \mathfrak{q}$ is strongly primary if and only if $q R_{a_{S}}$ is so.
(4) If $I=\bigcap_{\lambda \in \Lambda} \mathfrak{q}_{\lambda}$ is an intersection of primary ideals \mathfrak{q}_{λ} in R and if $I \supseteq \mathfrak{a}$, we have $I R_{\mathfrak{a}_{S}}=\bigcap_{\lambda \in \lambda} \mathfrak{q}_{\lambda} R_{\mathfrak{a}_{S}}$.
(5) If $I=\bigcap_{i=1}^{m} \mathfrak{q}_{i}$ is an intersection of primary ideals \mathfrak{q}_{i} in R and if $\mathfrak{q}_{i} \supseteq \mathfrak{a}$ or $\underset{\mathfrak{q}_{i}}{ } \cap \stackrel{i=1}{=} \boldsymbol{\theta}$ for each i, we have $I R_{\mathfrak{a}_{S}}=\bigcap_{i=1}^{m} \mathfrak{q}_{i} R_{\mathrm{a}_{S} .}$. If the intersection $\bigcap_{i=1}^{m} q_{i}$ is irredundant, it gives again an irredundant intersection when the components $\mathfrak{q}_{i} R_{\mathfrak{a}_{S}}=R_{\mathfrak{a}_{S}}$ are omitted.

[^1]2. Rings of quotients (cf. [6]).

Definition 3. Let $U=\{a \in R$; as=0 for some $s \in S\}$. Then we call $R_{\pi S}$ the ring of quotients of S with respect to R, and denote it by R_{S}.

Lemma 1. U is an ideal and $S+U / U$ has no zero divisor in R / U.
(Proof) If $a, b \in U, a s_{1}=0, b s_{2}=0$ for some $s_{1}, s_{2} \in S$. Hence $(a+b) s_{1} s_{2}=0, s_{1} s_{2} \in S$. It follows that U is an ideal. If $s x \equiv 0$ (mod. $U)(s \in S, x \in R)$, we have $s^{\prime} s x=0$ for some $s^{\prime} \in S$. Therefore $x \in U$. This proves that $S+U / U$ has no zero divisor in R / U.

Remark 1. If \mathfrak{q} is a primary ideal in R such as $\mathfrak{q} \cap S=\theta$, then we have $\mathfrak{q} \supseteq U$.

Remark 2. Every $R_{\mathfrak{a}_{S}}$, with allowable \mathfrak{a}, is a homomorphic image of R_{S}.
3. Topological quotient rings.

Lemma 2. Let I be an ideal which does not meet S. Then there exists an ideal \mathfrak{p} such as $\mathfrak{p} \supseteq I, \mathfrak{p} \cap S=\theta$ and every ideal properly containing \mathfrak{p} meets S. \mathfrak{p} is necessarily a prime ideal.
(Proof) The existence of \mathfrak{p} can be proved by Zorn's Lemma, and \mathfrak{p} is prime because S is closed under multiplication.

Definition 4. The ideal \mathfrak{p} in Lemma 2 is called a maximal ideal with respect to S.

Definition 5. Let $\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$ be the totality of maximal ideals in R with respect to S. We call the intersection D_{S} of all strongly primary ideals belonging to some $p_{\lambda}(\lambda \in \Lambda)$ the topological kernel of S with respect to R. When $S=\{1\}$, we call D_{S} the topological kernel of R.

Lemma 4. Let D be an intersection of some primary ideals which do not meet S. Then $S+D / D$ has no zero divisor in R / D.
(Proof) Trivial.
Definition 6. Let D_{S} be the topological kernel of S with respect to R. Then we call $\mathrm{R}_{D_{S^{S}}}$ the topological quotient ring of S with respect to R, and denote it by $R_{[S]}$.

Note: When S is the complementary set of a prime ideal \mathfrak{p}, we use "of \mathfrak{p} " in place of "of S " and we use the notations $R_{\mathfrak{p}}$ and $R_{[\mathfrak{p}]}$ in place of R_{S} and $R_{[S]}$ respectively.

Chapter II. Semi-Local Rings.

1. Generalized semi-local rings.

Definition 1. A generalized semi-local ring is a ring whose topological kernel is (0). In any generalized semi-local ring R a topology can be introduced by taking ideals $\mathfrak{m}^{(1)}, \mathfrak{m}^{(2)}, \ldots$ to be neighbourhoods of zero, where $\mathfrak{m}^{(n)}$ is the intersection of all n-th power of maximal ideals. This is the natural topology of generalized semilocal ring.

Definition 2. A semi-local ring is a generalized semi-local ring which has only a finite number of maximal ideals.

Local rings, which were already defined in [8], may be defined as follows;

Definition 3. A local ring is a semi-local ring which has only one maximal ideal.

Proposition 1. A generalized semi-local ring R is a subring of the direct sum of $R_{\left[p_{\lambda]}\right.}(\lambda \in \Lambda)$ where $\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$ is the totality of maximal ideals in R. If we introduce in the direct sum the strong topology of product space, then R becomes its subspace.
(Proof) Trivial.
Proposition 2. A generalized semi-local ring has a completion \bar{R}. \bar{R} is again a generalized semi-local ring. If \bar{p}_{1} and $\overline{\mathfrak{p}}_{2}$ are two distinct maximal ideals in $\bar{R}, \bar{p}_{1} \cap R$ and $\bar{p}_{2} \cap R$ are distinct maximal ideals in R. There exists an inclusion preserving one-to-one correspondence between all of closed ideals in R and some of closed ideals in \bar{R}; if \mathfrak{a} and $\overline{\mathfrak{a}}$ correspond to each other, $\overline{\mathfrak{a}} \cap R=\mathfrak{a}$ and the closure of $\mathfrak{a} \bar{R}$ in \bar{R} is $\overline{\mathfrak{a}}$.
(Proof) This follows from the general theory of completion of topological ring.

Remark. If R is a semi-local ring, \bar{R} is also a semi-local ring. If R is a local ring, \bar{R} is also a local ring.

Proposition 3. Let \bar{R} be the completion of a generalized semilocal ring R. If an element u of R is not a zero divisor in R and if every $u \mathfrak{m}^{(n)}$ is closed in R, it is not in \bar{R} either.
(Proof) Let $u v=0(v \in \bar{R})$. We take a sequence $\left(v_{n}\right)$ such that $v-v_{n} \in \mathfrak{m}^{(n)}$. $u v_{n} \in u \mathfrak{m}^{(n)}$, and we have $v_{n} \in \mathfrak{m}^{(n)}$ because u is not a zero divisor in R. Hence $v=0$.
2. Semi-local rings.

Let, throughout this section, R be a semi-local ring and \mathfrak{m} be the intersection of all maximal ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{h}$ in R.

Proposition 4. Let a_{1}, \cdots, a_{h} be h elements in R. Then the system $x \equiv a_{i}\left(\bmod . p_{i}^{n}\right)(i=1,2, \cdots, h)$ is solvable, and all the solutions are congruent modulo \mathfrak{m}^{n}.
(Proof) Let $\mathfrak{a}_{i}=\bigcap_{j \neq i} \mathfrak{p}_{j}$. Then $\mathfrak{a}_{i}^{n}+\mathfrak{p}_{i}^{n}=R$. Let $e_{i, n}$ be an element of a_{i}^{n} such as $e_{i, n} \equiv 1\left(\bmod . p_{i}^{n}\right)$. With such $e_{i, n}(i=1,2, \cdots, h)$ we have that $x=\sum_{i=1}^{n} e_{i, n} a_{i}$ is a solution. If x^{\prime} is another solution, we have $\left(x^{\prime}-x\right) \sum_{i=1}^{n} e_{i, n} \equiv 0\left(\bmod . \mathfrak{m}^{n}\right) . \quad \sum_{i=1}^{n} e_{i, n}$ is a unit, because $\sum_{i=1}^{n} e_{i, n} \equiv 1$ $\left(\bmod . \mathfrak{p}_{j}\right)$ for every $j(j=1,2, \cdots, h)$. Therefore $x^{\prime}-x \equiv 0\left(\bmod . \mathfrak{m}^{n}\right)$.

Proposition 5. If R is complete, there exists a system of idempotent elements $\left\{\varepsilon_{i} ; i=1,2, \cdots, h\right\}$ such as $\varepsilon_{i} \notin \mathfrak{p}_{i}, \varepsilon_{i} \in \mathfrak{p}_{j}$ if $i \neq j$,
$\sum_{i=1}^{n} \varepsilon_{i}=1, \varepsilon_{i} \varepsilon_{j}=0$ if $j \neq i$ and $R_{s_{i}}$ is isomorphic with $R_{\left[p_{i j}\right.}=R_{p_{i}}$.
(Proof) Take $e_{i, n}$ in the proof of Proposition 3. The h sequences $\left(e_{i, n}\right)(i=1,2, \ldots, h)$ are convergent. Their limits ε_{i} fulfills our requirement.

Remark. This proposition shows that $R=R_{\varepsilon_{1}}+\cdots+R_{\varepsilon_{h}}$ (direct sum), $R_{\varepsilon_{i}}$ being local ring with ε_{i} as identity, and R is also the product space of $R \varepsilon_{i}$.

Proposition 6. Let \bar{R} be the completion of R. Then $\bar{R}_{\varepsilon_{i}}$ explained in Proposition 5 is isomorphic with the completion of $R_{\left[p_{i]}\right.}$ where p_{i} is the intersection of R and the maximal ideal which corresponds to ε_{i}.
(Proof) If we observe the fact that the kernel of natural homomorphism of R into $\bar{R}_{\varepsilon_{i}}$ is $\bigcap_{n=1}^{\infty} \mathfrak{p}_{i}^{n}$, Proposition 6 follows from Proposition 5.

Proposition 7^{3}. A semi-local ring R is Noetherian if and only if (1) every ideal is closed and (2) every maximal ideal has a finite basis.
(Proof) If R is Noetherian and if \mathfrak{a} is an ideal in $R, R / \mathfrak{a}$ is clearly semi-local. Therefore \mathfrak{a} is closed. Converse follows from Propositions 2 and 5 and the fact that a complete local ring whose maximal ideal has a finite basis is Noetherian: [8, Corollary to Proposition 2], [3, Theorem 3].

We mention by the way also.
Proposition 8. A local ring R whose maximal ideal is principal ideal (x) is a Noetherian local ring.
(Proof) Observe the fact that every ideal but (0) is an ideal generated by x^{n} for some n.
3. Some further properties.

Lemma $1^{4)}$. An element a is integral over a ring R if and only if there exists a ring R^{\prime} such as (1) R^{\prime} contains R as a subring, (2) R^{\prime} is a finite R-module and (3) $R^{\prime} \ni a$.
(Proof) If a is integral over $R, R^{\prime}=R[a]$ satisfies three conditions above. Conversely, if R^{\prime} is such a ring as above, we can set $R^{\prime}=\sum_{i=1}^{n} R y_{i}$ with $y_{1}=1$. Then we have $a y_{i}=\sum_{j=1}^{n} \alpha_{i j} y_{j}\left(\alpha_{i j} \in R, i=1,2\right.$, $\cdots, h)$. If we set $f(a)=\left|a \delta_{i j}-\alpha_{i j}\right|, f(a)$ is a monic polynomial on a with coefficients in R. We have $f(a) y_{i}=0(i=1,2, \cdots, h)$. Therefore $f(a)=0$.

[^2]This being said, we shall also make use of the following lemma due to Cohen and Seidenberg (cf. Theorem 2, § 1, $[4]^{5)}$).

Lemma 2. Let R^{\prime} be integral over a ring R. Then for every prime ideal \mathfrak{p} in R there exists a prime ideal \mathfrak{F} in R^{\prime} such as $\mathfrak{B} \cap R=\mathfrak{p}$.

Corollary. Let R^{\prime} be a ring containing R as a subring and which is a finite R-module. Let a be an ideal in R. Then $\mathfrak{a} R^{\prime} \neq R^{\prime}$. Proposition 9^{*}. Let R be a semi-local ring. Let R^{\prime} be a ring containing R as a subring and finite over R. Then R^{\prime} is a semilocal ring and R is a subspace of R^{\prime}. If R is complete, R^{\prime} is also complete.
(Proof) Let \mathfrak{F} be a maximal ideal in $R^{\prime}, \mathfrak{P} \cap R$ is a maximal ideal in R. If \mathfrak{p} is a maximal ideal in R, then $R^{\prime} / \mathfrak{p} R^{\prime}$ is a finite module over the field R / \mathfrak{p}. This shows that there exists only a finite number of (maximal) ideals in R^{\prime}, say $\mathfrak{F}_{1}, \cdots, \mathfrak{P}_{r}$ and that $\left(\mathfrak{P}_{1} \cdots \mathfrak{B}_{r}\right)^{k}$ $\subseteq_{\mathfrak{p}} R^{\prime}$ for some k. This proves the first part of our assertion. Now, let R be complete. Let $\left(v_{n}\right)(n=1,2, \cdots)$ be a convergent sequence in R^{\prime}. We set $R^{\prime}=\sum_{i=1}^{m} R y_{i}$. Then we write $v_{n}-v_{n-1}=\sum_{j} u_{n, j} y_{j}$ where $u_{n, j}$ are elements of the intersection of all $m(n)$-th powers of maximal ideals with $m(n) \uparrow \infty$ and $v_{0}=0$. Then $\left(u_{n, j}\right)(n=1,2, \cdots)$ $(j=1,2, \cdots, m)$ are m convergent sequences in R. Let α_{j} be their limits respectively. Then $\sum_{j} \alpha_{j} y_{j}$ is the limit of the sequence $\left(v_{n}\right)$. This proves the second part of our assertion.

Proposition 10. Let R be a complete semi-local ring (with maximal ideals $\left.\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right)$. If R^{\prime} is a ring which contains R as a subring in which $\bigcap_{n=1}^{\infty} \mathfrak{m}^{n} R^{\prime}=(0)$ (where $\mathfrak{m}=\bigcap_{i=1}^{h} \mathfrak{p}_{i}$), then $\mathfrak{m} R^{\prime} \cap R=\mathfrak{m}$. Furthermore, if $R^{\prime} / \mathfrak{m} R^{\prime}$ is a finite R / \mathfrak{m}-module, R^{\prime} is a finite R module, whence R^{\prime} is also a complete semi-local ring by Proposition 9.
(Proof) It is clear that $\mathfrak{m} R^{\prime} \cap R \supseteq \mathfrak{m}$. If $\mathfrak{m} R^{\prime} \cap R \neq \mathfrak{m}$, there exists at least one maximal ideal, say \mathfrak{p}_{1}, such as $\mathfrak{p}_{1} R^{\prime}=R^{\prime}$. Then we have $\mathfrak{m}^{n} R^{\prime}=\left(\mathfrak{p}_{2} \cap \cdots \cap \mathfrak{p}_{h}\right)^{n} R^{\prime}$, contrary to our assumption. So necessarily $m R^{\prime} \cap R=\mathfrak{m}$. Now we assume that $R^{\prime} / \mathfrak{m} R^{\prime}$ is a finite R / \mathfrak{m} module. We set $R^{\prime} / \mathfrak{m} R^{\prime}=\sum_{i=1}^{d}(R / \mathfrak{m}) v_{i}^{*}$ and choose for each i an element v_{i} from v_{i}^{*}. Let x be any element of R^{\prime}. We construct d sequences $\left(x_{i, n}\right)(i=1,2, \cdots, d ; n=0,1, \cdots)$ such as $x \equiv \sum_{i=1}^{d} x_{i, n} v_{i}(\bmod$. $\left.\mathfrak{m}^{n} R^{\prime}\right)$. We set $x_{i, 0}=0$ for each i. If $x_{i, n}(i=1, \cdots, d)$ are already defined, we write $x-\sum_{i} x_{i, n} v_{i}=\sum_{k=1}^{N} y_{k} \xi_{k}$ with $y_{k} \in R^{\prime}, \quad \xi_{k} \in \mathfrak{m}^{n}$. Then
5) The proof can be simplified if we make use of the notion of the rings of quotients.

* See Correction at the end.
we can write $y_{k} \equiv \sum_{i} y_{k, i} v_{i}$ (mod. $\left.\mathfrak{m} R^{\prime}\right) \quad\left(y_{k, i} \in R\right)$. We set $x_{i, n+1}=x_{i, n}$ $+\sum_{k=1}^{N} y_{k, i} \xi_{k}(i=1, \cdots, d)$. Then each $\left(x_{i, n}\right)$ is convergent in R; let x_{i} be its limit ($i=1, \cdots, d$), and set $x^{\prime}=\sum_{i} x_{i} v_{i}$. Then $x^{\prime}-x \in \mathfrak{m}^{n} R^{\prime}$ for every n, namely, $x^{\prime}=x$. Therefore $R^{\prime}=\sum_{i} R v_{i}$.

Proposition 11. Let R and R^{\prime} be two semi-local rings such that R^{\prime} contains R as a subring and a subspace and is a finite R-module. Let \bar{R} and \bar{R}^{\prime} be the completions of R and R^{\prime} respectively. Then, if $R^{\prime}=\sum_{i=1}^{k} R y_{i}, \bar{R}^{\prime}=\sum_{i=1}^{k} \bar{R} y_{i}$ (up to an isomorphism).
(Proof) Since R is a subspace of R^{\prime}, R is also a subsapace of $\overline{R^{\prime}}$. So we can consider \bar{R} as the closure of R in \bar{R}^{\prime}. Then our assertion follows from the fact that $\sum_{i} \bar{R} y_{i}$ is a complete semi-local ring.

Proposition 12. If we assume, besides the assumption in Proposition 11, that R has no zero divisor in $\overline{R^{\prime}}$, we have, (1) if elements x_{1}, \cdots, x_{m} of R^{\prime} are linearly independent over R, they are so over \bar{R}, (2) if an element u of \bar{R} is a zero divisor in \bar{R}^{\prime}, it is already so in \bar{R}.
(Proof) We can assume without loss of generality that x_{1}, \cdots, x_{m} is a maximal system of linearly independent elements. Then we can find an element c of R such that $c R^{\prime} \subseteq \sum_{i=1}^{m} R x_{i}(c \neq 0)$. If $\sum_{i=1}^{m} u_{i} x_{i}=0\left(u_{i} \in \bar{R}\right)$ we choose m sequences $\left(u_{i, n}\right)(i=1, \cdots, m)$ such as $\lim u_{i, n}=u_{i}$ and $\sum_{i} c u_{i, n} x_{i} \in \sum_{i} \mathfrak{m}^{n} x_{i}$, namely, $\sum_{i} c u_{i, n} x_{i}=\sum_{i} a_{i, n} x_{i}, a_{i, n} \in \mathfrak{m}^{n}$, where \mathfrak{m} is the intersection of all maximal ideals in R. Since x_{1}, \cdots, x_{m} are linearly independent, we have $c u_{i, n}=\alpha_{i, n}$, namely $c u_{i, n} \in \mathfrak{m}^{n}$, whence $c u_{i}=0$ (for every i). We have $u_{i}=0$ for every i. Let next an element u of \bar{R} be not a zero divisor in \bar{R}. Assume $u v=0\left(v \in \bar{R}^{\prime}\right)$. We can write $c v=\sum_{i} \alpha_{i} x_{i}\left(\alpha_{i} \in \bar{R}\right)$. Hence, $\sum_{i} u \alpha_{i} x_{i}=0$ and therfore $u \alpha_{i}=0(1 \leq i \leq m)$. Then we have $\alpha_{i}=0(1 \leq i \leq m)$. So, $c v=0$ and $v=0$.

Proposition 13. Let \mathfrak{q} be an ideal in a semi-local ring R. Then R / \mathfrak{q} is again a semi-local ring if and only if \mathfrak{q} is closed in R. Let, when this is the case, \bar{q} be the closure of \mathfrak{q} in the completion \bar{R} of R. Then \bar{R} / \mathfrak{q} is the completion of R / \mathfrak{q}.
(Proof) The first part is evident, while the second follows from Proposition 2.

Proposition 14. Let R be a semi-local ring with maximal ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{h}(h>1)$. Then there exists an element u such as $u \in \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{r}$ and $u \notin \mathfrak{p}_{j}$ for $j>r$, where $0<r<h$.
(Proof) Trivial.

Proposition 15. Let R be a semi-local ring with maximal ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{h}$. If R is a subdirect sum of $R_{\left[p_{i}\right]}, R$ is the direct sum of $R_{\text {[pi] }}$.
(Proof) When $h=1$, our assertion is trivial. We will assume that $h>1$ and our assertion holds for semi-local rings with $h-1$ maximal ideals. We set $R_{\left[p^{2}\right]}=R_{i}$. Then $\mathfrak{a}=R \cap\left(R_{2}+\cdots+R_{h}\right)$ is an ideal in R. Further, $R / \mathfrak{a}=R_{1}$ by natural mapping. Let u_{1} be an element of R such as $u \notin \mathfrak{p}_{1}$, and $u_{1} \in \mathfrak{p}_{j}$ for any $j>1$. The residue class of u_{1} module \mathfrak{a} is a unit in R_{1}. Therefore if we write $u_{1}=v_{1}+\cdots+v_{n}\left(v_{i} \in R_{i}\right)$, we can assume that $v_{1}=\varepsilon_{1}$ where ε_{1} is the image of 1 in R_{1} and it is true that $v_{j} \in \mathfrak{p}_{j} R_{j}$ for any $j>1$. Then $v_{j} \equiv \varepsilon_{j}$ (mod. a), where ε_{j} is the image of 1 in R, because $1=\varepsilon_{1}+\cdots$ $+\varepsilon_{h} . \quad u_{2}=1-u_{1}=\sum_{j=2}^{n}\left(\varepsilon_{j}-v_{j}\right) \in \mathfrak{a} . \quad u_{2}$ is a unit in $R_{2}+\cdots+R_{h}$. Let b_{1} be the inverse element of u_{2} in $R_{2}+\cdots+R_{h^{\prime}}$. Then there exists an element $b=c_{1}+b_{1} \in R, c_{1} \in R$ for $R / R \cap R_{1}$ is a semi-local ring with $h-1$ maximal ideals. Then $b u_{2}=\varepsilon_{2}+\cdots+\varepsilon_{h}$. Therefore $1-\left(\varepsilon_{2}+\cdots\right.$ $\left.+\varepsilon_{h}\right)=\varepsilon_{1} \in R$. Therefore $R_{1} \subseteq R ; R / R_{1}=R_{2}+\cdots+R_{h}$. This proves our assertion.

It seems to me very likely that if a complete semi-local ring R^{\prime} contains a (semi-local) ring R as a subring and is a finite R module, then R is complete. But I have been able to prove only some special case as follows :

Lemma 3. Let R be a Noetherian semi-local ring having no zero divisor. If there exists a complete semi-local ring R^{\prime} which contains R as a subring and is a finite R-module, then R is complete.
(Proof) The completion \bar{R} of R is then a finite R-module. Let u be an element of \bar{R}. Then $1, u$ are linearly dependent over R, by Proposition 12. Therefore $\alpha u=\beta(\alpha \neq 0)$ for some $\alpha, \beta \in R$. Since R is Noetherian, αR is closed. Therefore $\alpha R \ni \beta$. Since α is not a zero divisor in \bar{R} (by Proposition 3), $u \in R$.

Proposition 16a. Let R and R^{\prime} be two semi-local rings such as (1) R is a direct sum of a finite nubmer of Noetherian semi-local rings, each of which has no zero divisor, (2) R^{\prime} contains R as a subring and (3) R^{\prime} is a finite R-module. Then R is complete if (and only if) R^{\prime} is.
(Proof) This follows immediately from Lemma 3.
Proposition 16b. Let R and R^{\prime} be two semi-local rings such as (1) R^{\prime} contains R as a subring and (2) R^{\prime} has a linearly independent basis $\left\{y_{1}=1, y_{2}, \cdots, y_{r}\right\}$ over R. Then R is closed in R^{\prime}. Therefore R is complete if any only R^{\prime} is.
(Proof) This follows readily from the fact that R is a subspace of R^{\prime}.

Remark. If a ring R is a subring of a semi-local ring R^{\prime} which
is integral over R (or, as a special case, finite over R), then R is a semi-local ring.

Appendix.

Proposition 17. If D is the topological kernel of R_{S}, then $R_{S} / D=R_{[S]}$.
(Proof) Trivial.
Therefore (1) $R_{[S]}$ is a generalized semi-local ring and (2) if R_{S} is a generalized semi-local ring, $R_{S}=R_{[S]}$.

Proposition 18. Let R be a Noetherian ring. If the family of maximal ideals with respect to S is finite, $R_{S}=R_{[S]}$.
(Proof) Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{h}$ be all the maximal ideals with respect to S. Then R_{S} is a Noetherian ring having no maximal ideals other than $\mathfrak{p}_{1} R_{s}, \cdots, \mathfrak{p}_{h} R_{s}$. Therefore R_{S} is a Noetherian semi-local ring.

Proposition 19. A necessary and sufficient condition for a ring R to be a subring of a generalized semi-local ring is that zero ideal is an intersection of some strongly primary ideals.
(Proof) If (0) is the intersection of strongly primary ideals $\mathfrak{q}_{\lambda}(\lambda \in \Lambda)$ belonging to \mathfrak{p}_{λ} respectively, then R is a subring of the direct sum of all $R_{\left[p_{\lambda}\right]}$. Conversely, if R is a subring of a generalized semi-local ring R^{\prime}, (0) in R is an intersection of strongly primary ideals because (0) in R^{\prime} is so.

Bibliography.

[1] C. Chevalley : On the theory of local rings, Ann. of Math. Vol. 44 (1943) pp. 690-708.
[2] : On the notion of ring of quotients of a prime ideal, Bull. Amer. Math. Soc. Vol. 50 (1944).
[3] I. S. Cohen: On the structure and ideal theory of complete local rings, Trans. Amer. Math. Vol. 59 (1946) pp. 54-106.
[4] I. S. Cohen and A. Seidenberg: Prime ideals and integral dependence, Bull. Amer. Math. Soc. Vol. 52 (1946) pp. 252-261.
[5] H. Grell : Beziehungen zwischen den Idealen verschiedener Ringe, Math. Ann. Vol. 97 (1927) pp. 490-523.
[6] A. I. Uzkov: On the rings of quotients of commutative rings, Mat. Sbornik N. S. 22 (64) (1948).
[7] W. Krull: Dimensionstheorie in Stellenringen, J. Reine Angew. Math. Vol. 179 (1938) pp. 204-226.
[8] M. Nagata: On the structure of complete local rings, forthcoming in Nagoya Mathematical Journal.

Correction.

Read Proposition 9 as follows:
Proposition 9. Let R be a semi-local ring and let R^{\prime} be a ring containing R as a subring and which is a finite R-module. Then (I) R^{\prime} possesses only a finite number of maximal ideals. (II) If there exist elements $c \varepsilon R, x_{1}, \ldots, x_{n} \in R^{\prime}$ such that c is not a zero divisor in R^{\prime} and $x_{0}=1, x_{1}, \ldots, x_{n}$ are linearly independent over R and that $c R^{\prime} \subseteq \sum_{i=0}^{n} R x_{i}$, then R is a semi-local ring. (III) If R^{\prime} possesses a linearly independent module basis over R, R is a closed subspace of R^{\prime} (by virtue of (II), R^{\prime} is a semi-local ring). (IV) If R^{\prime} is semi-local and if R is complete, then R^{\prime} is also complete.

[^0]: 1) The number in brackets refers to the bibliography at the end.
[^1]: 2) Except in the definition of topological kernel of R (Definition 5), we need not assume the existence of the identity in R, throughout this Chapter.
[^2]: 3) We can exclude neither of these 2 conditions: It is clear that we cannot exclude the condition (1); the example in Appendix (2) of [8] shows that we cannot exclude the condition (2).
 4) I owe this proof to Prof. G. Azumaya.
