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Wiman’s Theorem on Integral Functions
1of Order <--.

By Masatsugu TsuJI.
Mathematical Institute, Tokyo University.

(Comm. by T. TAKAGI, M.J.A., May 12, 1950.)

1. Density of sets.

Let E be a measurable set on the positive x-axis and E(a, b)be
its part contained in [a, b]. We put

(E)----lim--1 dr 3(E)=lim _1 dr (1)
?" CO, r) ?" C0, r)

(2)

1 I Ir/a-. log (r/a) (, ) r /---- log (r/a) (, ) r --(3)
We call (1) the upper (lower) density, (2) the upper (lower) loga-
rithmic density and (3) the upper (lower) strong logarithmic density.
Evidently

0-_3(E)(E)I, O_*(E)_(E)](E)]*(E)I
and

3_(E)+(C(E))=I, _(E)+](C(E))=I, _*(E)+]*(C(E))=I,
where C(E) is the complementary set of E. We shall prove:

Lemma 1. O3__(E)_*(E)_(E)](E)]*(E)’8(E)I.
Proof. Let -(E)=a, then or any e> 0,

r(a + ) (r ro(e) > 1),(r)= dr

so that if la<ro <r, since

dr ro
+

(a, r)

+I+(+)Io

(,)
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From this we have
-*(E)a:’(E).

Similarly, we can prove 3_(E)_-*(E), q.e.d.

2. Main theorem.

Let f(z) be an integral function of order (01/2) and

m(r)-Min. f(z) M(r)---Max. f(z)
Izlr

Then Wiman proved that there exists r- , such that m(r)--..
Besicovitch and Pennycuick) proved that

[E (log re(r) > r-)] 1 2p for any e > 0 (4)
and that there exists an integral function of any order g(0pl),
such that

_[E(logm(r)>-r"-)]=O for any e>0, (5)
where E(log m(r)a) is the set of r, such that log m(r)a.

We shall prove
Theorem 1. (Main theorem). Let f(z) be an integral function of

order p(O g 1/2), then

*[E (log re(r) >r-)]l 2p

for any eO.

(ii) If li- log M(r) then

*[E (log m(r) >krP)]1-2p

for any
(iii) There exists an integral function of any order p(0<p<1/2), such
that

][E (log m(r)
(4) follows from (i) by Lemma 1.

3. Some lemmas.

Let D be a domain on the z-plane, which contains z0 and z-
belongs to its boundary A. Let D be the part of D, which is
contained in [z[<r. Then D consists of at most a countable number
of connected domains. Let Dr be the connected one, which contains
z=0 and tr be the part of the boundary of Dr, which lies on z I=r.

1) A. S. Besicovitch: On integral functions of order<l. Math. Ann. 97

(1927). Besicovitch’s proof is valid only for functions of regular growth. The
general case was proved by K. Pennycuick: On a theorem of Besicovitch Jour.
London Math. Soc. 10 (1935). Bokjellberg: On certain integral and harmonic

functions. Thbse. Upsala (1984). M. Inoue: Sur le module minimum des fonc-
tions sousharmoniques et des fonctions entibres d’ordre<1/2. Mem, Fac. Sci. Kyusyu
Univ. ser. A. Vol. IV. No. 2 (1949).



No. 5.] Wiman’s Theorem on Integral Functions of Order <1/2. 119

Then O consists of at most a countable number of arcs {0r*)} and let
tO(r) be the maximum of lengths of these arcs. We define (r) as
follows. If Iz]=r meets A, then we put O(r)=-O(r) and if
does not meet A and is contained entirely in D, then we put -d(r)--
Let Ur(Z) be a harmonic function in Dr such that u(z)--O at regular
points on the boundary at D, which lies in zlr and ur(z)--I on

0. Then u(z) is the harmonic measure of 0 with respect to D.
I have proved in the former paper ) that

u(z) const, e () (6)

where const, is a pure numerical constant.
Let E be the set of r, such that z I--r meets A, then O(r)<:2= for
teE and O(r)-- otherwise, so that

Lemma 2.

u(z) const, e (11, -) (r > 41z l)-
Beurling ) proved that

ur(z) 2 e (z,r) (7)

but since we shall use (6) latter and Lemma 2 suffices for the later
proof, we use Lemma 2 instead of (7).

Lemma 3. Let E be a closed set on the positive real axis of the
z-plane, such that

a

and Ur(Z) be a harmonic function in z] r, except on E(O, r), such
that u(z)--O on E(O, r) at its regular points and u(z)=l on lz
Then

u,(z) const. (_)--, if r

_
koiZ I, Izl_ 1,

where ko is a certain constant ( 1).

Proof. Since _*(E) > a, we have if _k0,
dr_alog r (lz[l),

so that by Lemma 2,

2) M. Tsuji" A theorem on tbe majoration of harmonic measure and its
applications. Tohoku Math. Jour. 3 (1951).

3) Beurling" Etudes sur un problme de majoration. Thse Upsala (1933).
M. Inoue Une tude sur les fonctions sousharmoniques et ses applications aux fonc-
tions holomorphes. Mem. Fac. Sci. Kyusyu Univ. (1943).
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u(z) const. ([z) (r

_
k0 z ], z 1).

Lemma 4. Let E be a closed set on the positive real axis of the
z-plane, such that

_*E) > 2k (0k 1/2).
Then there exists a harmonic function u(z)O outside E, such that
u(r)=r on E a$ its regular points and

O<u(z) const. z (] z] 1).

Proof. Let u(z) be the harmonic function defined by Lemma 3 and
v(z) be a harmonic unction outside E, such that v(z)=O on E0, r)
and v(z)=l on E-E(0, r) at its regular points. Then

v(z)u(z) in zlr.
We take k, such that

*(E) > 2k > 2k (k > k),
then by Lemma 3,

v() N () eons. ( I , I 1), (8)

so ha he integral

u(z);v(z) r- dr ) (9)

converges and represents a harmonic function outside E.
Let z=ro be a regular point of E, then if z tends to r0 from the
outside of E, then lira v(z)=v(ro).

Since v(z) is majorated by (8), we have by Lebesgue’s theorem,

lim ()k v(e)r-ge r-g=e, (10)
zr

so that u(r)=r on E at its regular points.
Since 0v(z)l, we have from (9),

U(Z) k
’z’

r-1 dr +k ( v(z) r- dr
Jo J0

(ko]zl) +const.
,x -/ t+-(r=l z t)

cot. zi.
Let

4. Proof of the main theorem.

f(z)=17 1-- z

4) The expression of u(z) in the form (9) and the proof of (10) are suggested
to the author by A. Mori.
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be an integral function of order (0 p 1/2), then since

/ 1- r
m@)-<M(r)N//t 1+ r

we may suppose, or the proof, that all a are positive, so that

m(r)= H 1-- r M(r) 1+ r f r), (aO)

(i) Let

and suppose that

so that

E=E (log m(r) (11)

and suppose that

and let

(ii) Suppose that

_(E) > _*(E) > 2. (13)
We construct a harmonic function u(z)by Lemma 4, with k--g,
such that u(r)=r" on E at its regular points, then

u(-R) g const. R (R 1).

Since g, there exists Ro, such that

log M(Ro)-u(-Ro)--log f(-Ro)l-u(-Ro) > O.

Let u(z) be defined as in Lemma 3, then since

log f(r)I-u(r)=log m(r)-r < 0 on E,
we have

log f(z)I-u(z)

_
log M(r)u(z) in zl r,

so that by Lemma 2,

0 log If(- R0) l-u(-R0) log M(r)u(- Ro)

const, log M(r) e (’c., /) (r > 4Ro),
hence

1 1 dr : const. +log log M(r).

From this we have
1(E)=lim log

2,

which contradicts (13). Hence *(E) 2g, so that

*[(E (log m(r)

logM(r)

E=E(log m(r)

_
kr) (k > O)

_*(E) > 2p.

(14)

(15)

(16)

_*(E) > 2p (> 2p,), (12)
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Then we construct a harmonic function u(z) by Lemma 4, such that
u(r)----kr on E at its regular points, then by Lmma 4,

u(-R)

_
const. R.

By (15), there exists R0, such that
log1M(Ro) u( Ro)--log f( Ro) I- u( Ro) >> 0.

From this we proceed similarly as in (i) and we can prove that

*[E (log m(r) kr.)]

_
1 -2p for any k 0.

(iii) Next we shall prove that there exists an integral function of
order g (0 p 1/2), such that

[E(log re(r) r"-’)] 1 2e, (0 e g(1 2p).
Since 0 e (1-2p),

We choose , such that 1-2p>3>__L_, then
2p p-e

< 1 2g, -t(1 + 3)(p- e)----- 1 + s (s > 0). (17)

Let

n+-- e n( (i=1, 2, ...), (18)
wherc [x] is the integral part of x and we choose n, so large that
1 <n<n< <n -Let P, be a point on the curve y=x (k---> i), whose
We connect P, P+I by a rectilenear segment L, whose equation is

where

so that

y=ax fl (19)

n
a---- n+--n , n+q fl .,n--nn+ (20)

--=n--] (] > 0), (21)

= n,(n+--n) ,. n[ 0 (i oo). (22)
i+ n /cTI+

By (19), n_x_n+ is mapped on n_y_n+ Let

f(z)=I1 i-- z
n=l

(23)

where an=an-fie (n n

_
n/).

The curve, which is composed of L (i=1, 2,...) is called the curve
of roots of f(z) in Besicovitch’s paper.
Since L lies above the curve y=x
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a

_
n (n=l, 2,...), a--n (i=1,2,...),

1so that the convergence exponent of a, is -p, hence f(z) is an

integral function of order p and

m(r)-- 11 1- r

We shall prove that

[E(log m(r) > r-)] 3
1+3

Let n r then

so that

Since

(24)

< l-2p.

r=av--9 (nz’n/l),

n--n+
(n_nn/).

----r<l for n>n+, we have by putting m-It], if rn.+--1
an

m(r) II
n<n

Since F(z) has a pole of the first order at z=0, we have from (22),

k-1r(],)const. 1const. n,

so that
’. F(r--n + 1)F(nl--r + i)

const. n,+ F(n,+-n, + 1)
(k’=k+l).

If n,rn,+l, or n,+--lr:n,+, then we have easily

m(r)___const, n,+’"’ (25)
If n, +lrn,+- 1, then by Stirling’s formula,

O(r)= r(v-n, + 1)r(n,+,- + 1)
F(n,+,-n,+l)

Since (r-n,)’-",(n,+,-r),+, attains its maximum at ro= and
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its value at ro is
/\+---n)n-n2

we have

(r)const.t/n+ 2-,const.,
so that for

m(r)const. n+’, (26)

or log m(r)const, n log n+const, n+ <n
(1+ 6)(p-)

O+)(-)
Hence log m(r)r- for n[O+)rn+, (27)
so that E=E(log m(r) > r-)
is contained in {L}, where L=[n, n(l*)]. Now

dr k(logn+logn_+. +logn)k3(logn+(i-1)logn_)

Since nn_, we have iO(loglogn), so that
d* n, +00o +O0o n,)

k(1 +)logn, (0 with i).
Hence if

(+) 1 +3log log log

ro hi we here

5. Some remarks.

1. Le f(z) be an integral Cuneion o finite order p and D be
a domain, whieh contains z=0 and z---- lies on is boundary A and
log f(z)[k log r z =r, ]0) on A. We define O-(r) for D as in 3.
Let C’I z l--a be a circle contained in D and we choose a constant K> 0,
such that log f(z) l- k log z I-K0 on C and log M(a) + k log a +K> 0.

Let zo be a point of D, such that log f(zo) -k log/z0 -K>O
Since log M(r) is a convex function of log r and lim log M(r)

log r
log M(r) k log r 0 for large r 0, hence by (6),

0 <log f(zo) l- k log z0 I-K(logM(r) k log r + K)u,(zo)

!2-- dr

const.(log M(r) k log r +K )e 0
()

(r> 4ro).
From this we have
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Theorem 2. Let f(z) be an integral function of finite order p
and log f(z)/k log r (k 0) on the boundary A of an infinite domain
D, then

27 I dr
(A)--lim 10g J r-(r)--

2p.

Theorem 3. Let f(z) be an integral function of order
p(O p 1/2), then

_[E(logm(r)klogr)]l-2p0 (k0) ).

Let (r) be an increasing function of r, such that lim (r) --, then
log r

for any 01, there exists an integral function of order p, such
that

[E(log m(r)(r))]=O.

Proof. The first part follows from Theorem 2, since the set
E of r, such that z =r meets A coincides with E=E(log m(r)k log r)
and 0(r)2z for rE and O(r)= otherwise. We shall prove the

second part. We put k=l. Since (r)=, we can choose
p log r

positive integers n, such that lnn...n, n+ and

+1
(+)

(i+1)n,
+log (n+)

or + k (28)(n+l) ( + 1)n log n+x.
With these n, we construct an integral function f(z) of order as
(23) in the proof of Theorem I (iii). Then for nrn+, we have
by (26), (28),

log m(r)cot, n logn+x(n)(n) (01)
so that logm(r)(r) for n+rn+
Since

(1 3) n+x, L n+]
dr log =[nl,

and is arbitrary, we have [E(logm(r)(r))]=l, so that

[E(log m(r)(r))]

6. Dirichlet’s problem with an unbounded boundary value.
1. Let D be a domain on the z-plane, which contains z=oo on

its boundary .4 and (z) be a given eontinuous function on A. In
the usual Diriehlet’s problem, (z) is assumed to be bounded. If
(z) is unbounded, there exists, in general, no harmonic funetion in

5) M. Inoue 1.c. 3)
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D, which assumes the value (z) on A. We consider a special case,
where (z)=r (Izl--r, kO) and shall prove

Theorem 4. (i) If
(A)= lim 2.. d>2k (a--1/2_(A)-k>0),

logr tO(r)
then there exists a harmonic function u(z) in D, which assumes the
value r at regular points of A and

r
dr

ru(z)const. 1 e (; (] z ]r) in D

for any eO.
(ii) If *()=lim

2, : r>2k

"log (r/a) tO(r)
then ru(z)const, r in D.

Proof. (i) Let D, (r), u(z) be defined as in 3. Then by (6),
_
. d_r

u(z0)const, e ro) ( Zo =ro, r4ro) (29)
By the hypothesis,

so that

d 2ro dr

u(zo)cot, e o)e const. (r4ro). (31)

Let be the part of , which lies in z[r and v(z) be a harmonic
function in D, such that v(z)=O on and v(z)=l on - at its
regular points. Then

v(z)u(z) in z ]r, (32)
so that by (31) the integral

converges and represents a harmonic function in D. We can prove
similarly as the proof of Lmma 4, that u(z)=r on A at its regular
points. Hence a harmonic function u(z), which satisfies the condi-
tion o2 the theorem exists.

(ii). Let zo ( zo ]=ro) be any point of D. Then by (31), (32), (33),
co kv(zo)r_drU(Zo)=k)o v(zo)r-dr +

J4r

ko r_dr +const" e dr
4r l+l-k

2r dr
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Since by (30)

we have
e

2r{
dr

)_(2r0) (2r0_R0)

u(z0)const. 1 i 2to dr

-e )

Since k is any number, such that 1/2_(A)kk, we have

1 12r’ dr

U(Zo)_<consto r-for any e0.
(iii). Next we shall prove that ru(z) in D. Let V(z) be a

harmonic function in D, such that V(z)=r (z]=r) on the vhole
boundary of D. Then since r is subharmonic, we have

rV(z) in D.
Let u(z) be the harmonic function constructed in (i), we have by
the maximum principle,

rV(z)Ru(z) + u(z) in D (Rr)
Since by (31), Ru,(z)O (R), we have ru(z) in D.

(iv). If

*(A)=lim 2= : dr
/ log (r/a) r(r) 2k

then we can prove similarly as Lemma 4,

u(z)const, r in D.
Hence our theorem is proved.

2. By means of the above theorem, we can prove similarly as
Theorem 1 the following theorem.

Theorem . Let f(z) be an integral function of .finite order
pO and logf(z)]r-’ (0) on the boundary A of an infinite
domain D, then

i*(A)=lim 2= 2p.
/- log (r/a)

Compare this theorem with Theorem 2.
If f(z) is of regular growth, such that

lira log log M(r)
log r

then the set log f(z)]r- contains an infinite domain for any
e0. As an application of Theorem 5, we shall prove the following
two theorems.

Tehorem 6. Let f(z) be an integral function offinite order
and A be the closed set of points, such that log] f(z)r- (] z =r,
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and A be the intersection of A with a half-line" arg z--O. Then

_*(o)g2.

Proof. Since log f(z)r- on Ao, if we apply Theorem 5 to
the outside of Ao, then we have our theorem, since O(r)--2=, when
z]--r meets .Ao and Y(r)= otherwise.

Theorem 7. Let f(z) be an integral function of finite order 0
and M(r)=Max. f(z) Then

*[E(log M(r) r-)] 1

for any 0 and for any 0 p there exists an integral func-
tion of order p, such that

[N(logM(e)>e"-)]<l, 0<s<in.
1+ 2

Peoof (i).
N =N(lo()r0) (e=_), ()

hen N consists of a countable number of disjoin closed intervals
L=[e,, ;] (=1, 2, ...) and

log f(z)
in the closed ring domain A "r]zlr

We cotruct a canal in A, such that we take off from A its
part" [argz ]3, rz]r and A be the remaining closed domain

and put A=A and let D be the complementary set of A. Then

D is a connected infinite domain and log f(z)rx on its boundary
A. Hence by Theorem 5

lim 2
r/---- 10g (r/a) r8 (r)

Since O(r)=2 for rE and O(r)= otherwise, we have

*(N) m
log

so ha for 0, we have *(N)=0, hence

*[ (lo(r)>r.-l] .
(ii). Nex we shall rove ha for any 0<0<, here exists an

integral function of order

[E(log M(r) > r-)]
l+p 2

thenFirst suppose that 0

->->o, (+p)(p-)=+s
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With this s>0, we construct an integral function f(z) of order
as (23) in the proof of Theorem 1 (iii). Let

then

n/<r<-,o/ (k=1-- > 1) (35)

(I +- ) II H. II (36)

:Now
IIl(2n+)n

Since a--an-- fl, a=n, a,,n:

logH= log 1+ +. + log 1+

log 1 + r + dxk log n+ +log n+x

klog nt+z + const, n; log n+const, log n+x

Similarly for ji + 1,
nJ+1 r j+l

log 1 + log 1 + +-log

r(5 1 log )const. rconst. + n+
so that

1log/hconst, r
n/

Since n/_2n, n/_2-n/, we have

log/hconst, r _21_ n-1const, r_ const, i+1

const.--0.
i+1

Hence 2rom (37), (38), (39),
I+log M(v)const. n log n+ const, nl+=<

=?+)(P-)re- or .+rn-so that E=E(logM(r)r-) is contained in {L}, where
I=[n-, n+]. Since

dr_ 2 logn+,
h r l+p

we have smflarly as the proo of Theorem i (ii),
I dr 2P_<l.(E)=imo ,-V +

Next suppose that lp<. We choose a

(37)

r )dx

(38)

(39)

rational number
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2=,p/q, such that 2p, where p, q are positive integers. Then
p=p/i 1. We construct an integral function f(z) of order , such
that

[E(logMl(r)>rl-l)]< 1, 0<el<P--- P (40)
l+p ,,1(,,t + p)

where M(r)=Max. ]f(z). We put z=wx and let
q-1f(w)=(f(’z)--a)= H (f(’wX)-a) (=e

M(R)=Max.lf(w) (w=R, z=r, r=RX). (41)

Then for a certain a f(w) is an integral function of order p) and

M(R)<[Ml(r)]q/ (r> to). (42)
Since the logarithmic density is invariant for the transformation
r=Rx, we have from (40), (42),
[E(logM(R)) (q + 1)R"-’)] 2[E(log M(R)) (q + 1)R-0]< 1.

Hence for any 0]1,
[E(logM(R) >RP-x)] < 1.

Since e<] --P- for -1, , we have+p 2

(43)

for any e< p/2.
[E (logM(R) >R-’)] < 1

Since
p p )-- PMin. l+p 2 l+p

for O<pl,

for l<p<

our theorem is proved.

6) G. Valiron" Lectures on the general theory of integral functions, p. 190.


