23. Wiman's Theorem on Integral Functions

$$
\text { of } \operatorname{Order}<\frac{1}{2}
$$

By Masatsugu TsujI.
Mathematical Institute, Tokyo University.
(Comm. by T. Takagi, m.J.a., May 12, 1950.)

1. Density of sets.

Let E be a measurable set on the positive x-axis and $E(a, b)$ be its part contained in $[a, b]$. We put

$$
\begin{align*}
& \bar{\delta}(E)=\varlimsup_{r \rightarrow \infty} \frac{1}{r} \int_{E(0, r)} d r \quad, \underline{\delta}(E)=\lim _{r \rightarrow \infty} \frac{1}{r} \int_{B(0, r)} d r, \tag{1}\\
& \bar{\lambda}(E)=\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \int_{B(1, r)} \frac{d r}{r}, \underline{\lambda}(E)=\lim _{r \rightarrow \infty} \frac{1}{\log r} \int_{B(1, r)} \frac{d r}{r}, \tag{2}\\
& \bar{\lambda}^{*}(E)=\varlimsup_{r \mid a \rightarrow \infty} \frac{1}{\log (r / a)} \int_{E(a, r)} \frac{d r}{r}, \underline{\lambda}^{*}(E)=\lim _{r / a \rightarrow \infty} \frac{1}{\log (r / a)} \int_{E(a, r)} \frac{d r}{r}(a \geq 1) . \tag{3}
\end{align*}
$$

We call (1) the upper (lower) density, (2) the upper (lower) logarithmic density and (3) the upper (lower) strong logarithmic density. Evidently

$$
0 \leqq \underline{\delta}(E) \leqq \bar{\delta}(E) \leqq 1, \quad 0 \leqq \underline{\lambda}^{*}(E) \leqq \underline{\lambda}(E) \leqq \bar{\lambda}(E) \leqq \bar{\lambda}^{*}(E) \leqq 1
$$

and

$$
\underline{\hat{\delta}}(E)+\bar{\delta}(C(E))=1, \quad \underline{\lambda}(E)+\bar{\lambda}(C(E))=1, \quad \underline{\lambda}^{*}(E)+\bar{\lambda}^{*}(C(E))=1,
$$

where $C(E)$ is the complementary set of E. We shall prove:
Lemma 1. $0 \leqq \underline{\delta}(E) \leqq \underline{\lambda}^{*}(E) \leqq \underline{\lambda}(E) \leqq \bar{\lambda}(E) \leqq \bar{\lambda}^{*}(E) \leqq \bar{\delta}(E) \leqq 1$.
Proof. Let $\bar{\delta}(E)=\alpha$, then for any $\varepsilon>0$,

$$
\mu(r)=\int_{B(0, r)} d r \leqq r(\alpha+\varepsilon) \quad\left(r \geqq r_{0}(\varepsilon)>1\right),
$$

so that if $1 \leqq \alpha<r_{0}<r$, since $\mu(r) \leqq r$,

$$
\begin{aligned}
& \int_{B(a, r)} \frac{d r}{r} \leqq \int_{1}^{r_{0}} \frac{d r}{r}+\int_{r_{0}}^{r} \frac{d \mu(r)}{r} \\
& \quad \leqq r_{0}+\left[\frac{\mu(r)}{r}\right]_{r_{0}}^{r}+\int_{r_{0}}^{r} \frac{\mu(r)}{r^{2}} d r \leqq r_{0}+1+(\alpha+\varepsilon) \int_{r_{0}}^{r} \frac{d r}{r} \\
& \quad \leqq r_{0}+1+(\alpha+\varepsilon) \log \frac{r}{a} .
\end{aligned}
$$

If $r_{0} \leqq a<r$, then similarly

$$
\int_{I(a, r)} \frac{d r}{r} \leq 1+(\alpha+\varepsilon) \log \frac{r}{a} .
$$

From this we have

$$
\bar{\lambda}^{*}(E) \leqq \alpha=\bar{\delta}(E) .
$$

Similarly, we can prove $\underline{\delta}(E) \leq \bar{\lambda}^{*}(E)$, q.e.d.

2. Main theorem.

Let $f(z)$ be an integral function of order $\rho\left(0<\rho<\frac{1}{2}\right)$ and

$$
m(r)=\operatorname{Min}_{|z|=r} .|f(z)|, \quad M(r)=\operatorname{Max}_{|z|=r} .|f(z)| .
$$

Then Wiman proved that there exists $r_{n} \rightarrow \infty$, such that $m\left(r_{n}\right) \rightarrow \infty$. Besicovitch and Pennycuick ${ }^{1}$ proved that

$$
\begin{equation*}
\bar{\delta}\left[E\left(\log m(r)>r^{\rho-\varepsilon}\right)\right] \geqq 1-2 \rho \text { for any } \varepsilon>0 \tag{4}
\end{equation*}
$$

and that there exists an integral function of any order $\rho(0<\rho<1)$, such that

$$
\begin{equation*}
\underline{\delta}\left[E\left(\log m(r)>-r^{\rho-\varepsilon}\right)\right]=0 \quad \text { for any } \quad \varepsilon>0, \tag{5}
\end{equation*}
$$

where $E(\log m(r)>\alpha)$ is the set of r, such that $\log m(r)>\alpha$.
We shall prove
Theorem 1. (Main theorem). Let $f(z)$ be an integral function of order $\rho\left(0<\rho<\frac{1}{2}\right)$, then

$$
\begin{equation*}
\bar{\lambda}^{*}\left[E\left(\log m(r)>r^{\rho-8}\right)\right] \geqq 1-2 \rho \tag{i}
\end{equation*}
$$

for any $\varepsilon>0$.
(ii) If $\varlimsup_{r \rightarrow \infty} \frac{\log M(r)}{r^{\rho}}=\infty$, then

$$
\bar{\lambda}^{*}\left[E\left(\log m(r)>k r^{\rho}\right)\right] \geqq 1-2 \rho
$$

for any $k>0$.
(iii) There exists an integral function of any order $\rho\left(0<\rho<\frac{1}{2}\right)$, such that

$$
\bar{\lambda}\left[E\left(\log m(r)>r^{\rho-\varepsilon}\right)\right]<1-2 \rho, \quad 0<\varepsilon<\rho(1-2 \rho) .
$$

(4) follows from (i) by Lemma 1.

3. Some lemmas.

Let D be a domain on the z-plane, which contains $z=0$ and $z=\infty$ belongs to its boundary Λ. Let D_{r} be the part of D, which is contained in $|z|<r$. Then D_{r} consists of at most a countable number of connected domains. Let D_{r}^{0} be the connected one, which contains $z=0$ and θ_{r} be the part of the boundary of D_{r}^{0}, which lies on $|z|=r$.

[^0]Then θ_{r} consists of at most a countable number of ares $\left\{\theta_{r}^{(i)}\right\}$ and let $r \theta(r)$ be the maximum of lengths of these arcs. We define $\bar{\theta}(r)$ as follows. If $|z|=r$ meets Λ, then we put $\bar{\theta}(r)=\theta(r)$ and if $|z|=r$ does not meet A and is contained entirely in D, then we put $\bar{\theta}(r)=\infty$. Let $u_{r}(z)$ be a harmonic function in D_{r}^{0}, such that $u_{r}(z)=0$ at regular points on the boundary at D_{r}^{0}, which lies in $|z|<r$ and $u_{r}(z)=1$ on θ_{r}. Then $u_{r}(z)$ is the harmonic measure of θ_{r} with respect to D_{r}^{0}. I have proved in the former paper ${ }^{2)}$ that

$$
\begin{equation*}
u_{r}(z) \leqq \text { const. } e^{-\pi \int_{2|k|}^{\frac{r}{2}} \frac{d r}{r \overline{0}(r)}}, \tag{6}
\end{equation*}
$$

where const. is a pure numerical constant.
Let E be the set of r, such that $|z|=r$ meets Λ, then $\bar{\theta}(r) \leq 2 \pi$ for $r \in E$ and $\bar{\theta}(r)=\infty$ otherwise, so that

Lemma 2.

$$
u_{r}(z) \leqq \text { const. } e^{-\frac{1}{2} \int_{B(2|q|, ~ r / 2)} \frac{d r}{r}} \quad(r>4|z|) .
$$

Beurling ${ }^{3)}$ proved that

$$
\begin{equation*}
u_{r}(z) \leqq 2 e^{-\frac{1}{2} \int_{E(z \mid l, r)} \frac{d r}{r}}, \tag{7}
\end{equation*}
$$

but since we shall use (6) latter and Lemma 2 suffices for the later proof, we use Lemma 2 instead of (7).

Lemma 3. Let E be a closed set on the positive real axis of the z-plane, such that

$$
\underline{\underline{\lambda}}^{*}(E)>\alpha
$$

and $u_{r}(z)$ be a harmonic function in $|z|<r$, except on $E(0, r)$, such that $u_{r}(z)=0$ on $E(0, r)$ at its regular points and $u_{r}(z)=1$ on $|z|=r$. Then

$$
u_{r}(z) \leqq \text { const. }\left(\frac{|z|}{r}\right)^{\frac{\alpha}{2}}, \quad \text { if } r \geqq k_{0}|z|,|z| \geqq 1,
$$

where k_{0} is a certain constant (>1).
Proof. Since $\underline{\lambda}^{*}(E)>\alpha$, we have if $\frac{r}{|z|} \geqq k_{0}$,

$$
\int_{B(2|z|, r \mid 2)} \frac{d r}{r} \geqq \alpha \log \frac{r}{|z|} \quad(|z| \geqq 1),
$$

so that by Lemma 2,

[^1]$$
u_{r}(z) \leqq \text { const. }\left(\frac{|z|}{r}\right)^{\frac{\alpha}{2}}\left(r \geqq k_{0}|z|,|z| \geqq 1\right)
$$

Lemma 4. Let E be a closed set on the positive real axis of the z-plane, such that

$$
\underline{\lambda}^{*}(E)>2 k \quad\left(0<k<\frac{1}{2}\right) .
$$

Then there exists a harmonic function $u(z)>0$ outside E, such that $u(r)=r^{k}$ on E at its regular points and

$$
0<u(z) \leqq \text { const. }|z|^{k} \quad(|z| \geqq 1) .
$$

Proof. Let $u_{r}(z)$ be the harmonic function defined by Lemma 3 and $v_{r}(z)$ be a harmonic function outside E, such that $v_{r}(z)=0$ on $E(0, r)$ and $v_{r}(z)=1$ on $E-E(0, r)$ at its regular points. Then

$$
v_{r}(z) \leqq u_{r}(z) \quad \text { in } \quad|z|<r .
$$

We take k_{1}, such that

$$
\underline{\lambda}^{*}(E)>2 k_{1}>2 k \quad\left(k_{1}>k\right),
$$

then by Lemma 3,

$$
\begin{equation*}
v_{r}(z) \leqq u_{r}(z) \leqq \text { const. }\left(\frac{|z|}{r}\right)^{k_{1}} \quad\left(r \geqq k_{0}|z|,|z| \geqq 1\right) \tag{8}
\end{equation*}
$$

so that the integral

$$
\begin{equation*}
u(z)=k \int_{0}^{\infty} v_{r}(z) r^{k-1} d r^{4)} \tag{9}
\end{equation*}
$$

converges and represents a harmonic function outside E.
Let $z=r_{0}$ be a regular point of E, then if z tends to r_{0} from the outside of E, then $\lim _{z \rightarrow r_{0}} v_{r}(z)=v_{r}\left(r_{0}\right)$.
Since $v_{r}(z)$ is majorated by (8), we have by Lebesgue's theorem,

$$
\begin{equation*}
\lim _{z \rightarrow r_{0}} u(z)=k \int_{0}^{\infty} v_{r}\left(r_{0}\right) r^{k-1} d r=k \int_{0}^{r_{0}} r^{k-1} d r=r_{0}^{k} \tag{10}
\end{equation*}
$$

so that $u(r)=r^{k}$ on E at its regular points.
Since $0 \leqq v_{r}(z) \leqq 1$, we have from (9),

$$
\begin{aligned}
& u(z) \leqq k \int_{0}^{k_{0}|z|} r^{k-1} d r+k \int_{k_{0}|z|}^{\infty} v_{r}(z) r^{k-1} d r \\
& \leqq\left(k_{0}|z|\right)^{k}+\text { const. } \int_{k_{0}|z|}^{\infty}\left(\frac{|z|}{r}\right)^{k_{1}} r^{k-1} d r=\left(k_{0}|z|\right)^{k}+\text { const. }|z|^{k} \int_{k_{0}}^{\infty} \frac{d t}{t^{1+k_{1}-k}} \\
&(r=|z| t)
\end{aligned}
$$

\leqq const. $|z|^{k}$.
4. Proof of the main theorem.

Let

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right)
$$

4) The expression of $u(z)$ in the form (9) and the proof of (10) are suggested to the author by A. Mori.
be an integral function of order $\rho\left(0<\rho<\frac{1}{2}\right)$, then since

$$
\prod_{n=1}^{\infty}\left|1-\frac{r}{\left|a_{n}\right|}\right| \leqq m(r) \leqq M(r) \leqq \prod_{n=1}^{\infty}\left(1+\frac{r}{\left|a_{n}\right|}\right),
$$

we may suppose, for the proof, that all a_{n} are positive, so that $m(r)=\prod_{n=1}^{\infty}\left|1-\frac{r}{a_{n}}\right|=|f(r)|, M(r)=\prod_{n=1}^{\infty}\left(1+\frac{r}{a_{n}}\right)=f(-r),\left(a_{n}>0\right)$.
(i) Let

$$
\begin{equation*}
E=E\left(\log m(r) \leq r^{\rho_{1}}\right) \quad\left(\rho_{1}=\rho-\varepsilon\right) \tag{11}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
\underline{\lambda}^{*}(E)>2 \rho\left(>2 \rho_{1}\right), \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\underline{\lambda}(E) \geqq \underline{\underline{1}}^{*}(E)>2 \rho . \tag{13}
\end{equation*}
$$

We construct a harmonic function $u(z)$ by Lemma 4, with $k=\rho_{1}$, such that $u(r)=r^{\rho_{1}}$ on E at its regular points, then

$$
u(-R) \leqq \text { const. } R^{\rho_{1}}(R \geqq 1) .
$$

Since $\rho_{1}<\rho$, there exists R_{0}, such that

$$
\log M\left(R_{0}\right)-u\left(-R_{0}\right)=\log \left|f\left(-R_{0}\right)\right|-u\left(-R_{0}\right)>0 .
$$

Let $u_{r}(z)$ be defined as in Lemma 3, then since

$$
\log |f(r)|-u(r)=\log m(r)-r^{\rho_{1}} \leqq 0 \text { on } E,
$$

we have

$$
\log |f(z)|-u(z) \leqq \log M(r) u_{r}(z) \text { in }|z|<r,
$$

so that by Lemma 2,

$$
\begin{aligned}
& 0<\log \left|f\left(-R_{0}\right)\right|-u\left(-R_{0}\right) \leqq \log M(r) u_{r}\left(-R_{0}\right) \\
\leqq \text { const. } \log M(r) e^{\left.-\frac{1}{2} \int_{E\left(2 R_{e},\right.} r / 2\right)^{r}} \frac{d r}{r} & \left(r>4 R_{0}\right),
\end{aligned}
$$

hence

$$
\frac{1}{2} \int_{B\left(22_{\theta}, r / 2\right)} \frac{d r}{r} \leqq \text { const. }+\log \log M(r) .
$$

From this we have

$$
\bar{\lambda}(E)=\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \int_{E(1, r)} \frac{d r}{r} \leqq 2 \rho,
$$

which contradicts (13). Hence $\underline{\Omega}^{*}(E) \leqq 2 \rho$, so that

$$
\begin{equation*}
\bar{\lambda}^{*}\left[\left(E\left(\log m(r)>r^{p-8}\right)\right] \geqq 1-2 \rho .\right. \tag{14}
\end{equation*}
$$

(ii) Suppose that

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log M(r)}{r^{\rho}}=\infty \tag{15}
\end{equation*}
$$

and let

$$
\begin{equation*}
E=E\left(\log m(r) \leqq k r^{\rho}\right) \quad(k>0) \tag{16}
\end{equation*}
$$

and suppose that $\quad \underline{\lambda}^{*}(E)>2 \rho$.

Then we construct a harmonic function $u(z)$ by Lemma 4, such that $u(r)=k r^{\rho}$ on E at its regular points, then by Lemma 4,

$$
u(-R) \leqq \text { const. } R^{\rho} .
$$

By (15), there exists R_{0}, such that

$$
\log M\left(R_{0}\right)-u\left(-R_{0}\right)=\log \left|f\left(-R_{0}\right)\right|-u\left(-R_{0}\right)>0
$$

From this we proceed similarly as in (i) and we can prove that

$$
\bar{\lambda}^{*}\left[E\left(\log m(r)>k r^{\rho}\right)\right] \geqq 1-2 \rho \text { for any } \quad k>0
$$

(iii) Next we shall prove that there exists an integral function of order $\rho\left(0<\rho<\frac{1}{2}\right)$, such that

$$
\bar{\lambda}\left[E\left(\log m(r)>r^{\rho-\varepsilon}\right)\right]<1-2 \rho, \quad(0<\varepsilon<\rho(1-2 \rho) .
$$

Since $0<\varepsilon<\rho(1-2 \rho)$,

$$
\rho-\varepsilon>2 \rho^{2}>0, \quad \frac{1-2 \rho}{2 \rho}>\frac{\varepsilon}{\rho-\varepsilon} .
$$

We choose δ, such that $\frac{1-2 \rho}{2 \rho}>\delta>\frac{\varepsilon}{\rho-\varepsilon}$, then

$$
\begin{equation*}
\frac{\delta}{1+\delta}<1-2 \rho, \quad \frac{1}{\rho}(1+\delta)(\rho-\varepsilon)=1+s \quad(s>0) . \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
n_{i+1}=\left[e^{n_{i}^{\frac{s}{2}}}\right](i=1,2, \ldots) \tag{18}
\end{equation*}
$$

wherc [x] is the integral part of x and we choose n_{1} so large that $1<n_{1}<n_{2}<\cdots<n_{i} \rightarrow \infty$.
Let P_{i} be a point on the curve $y=x^{k}\left(k=\frac{1}{\rho}>1\right)$, whose $x=n_{i}$. We connect P_{i}, P_{i+1} by a rectilenear segment L_{i}, whose equation is

$$
\begin{equation*}
y=\alpha_{i} x-\beta_{i}, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=\frac{n_{i+1}^{k}-n_{i}^{k}}{n_{i+1}-n_{i}} \sim n_{i+1}^{k-1}, \quad \beta_{i}=\frac{n_{i+1}^{k} n_{i}-n_{i}^{k} n_{i+1}}{n_{i+1}-n_{i}} \tag{20}
\end{equation*}
$$

so that

$$
\begin{gather*}
\frac{\beta_{i}}{\alpha_{i}}=n_{i}-\eta_{i} \quad\left(\eta_{i}>0\right) \tag{21}\\
\eta_{i}=\frac{n_{i}^{k}\left(n_{i+1}-n_{i}\right)}{n_{i+1}^{k}-n_{i}^{k}} \sim \frac{n_{i}^{k}}{n_{i+1}^{k-1}} \rightarrow 0 \quad(i \rightarrow \infty) \tag{22}
\end{gather*}
$$

By (19), $n_{i} \leqq x \leqq n_{i+1}$ is mapped on $n_{i}^{k} \leqq y \leqq n_{i+1}^{k}$. Let

$$
\begin{equation*}
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \tag{23}
\end{equation*}
$$

where

$$
a_{n}=\alpha_{i} n-\beta_{i} \quad\left(n_{i} \leqq n \leqq n_{i+1}\right)
$$

The curve, which is composed of $L_{i}(i=1,2, \ldots)$ is called the curve of roots of $f(z)$ in Besicovitch's paper.
Since L_{i} lies above the curve $y=x^{k}$,

$$
a_{n} \geqq n^{k} \quad(n=1,2, \ldots), \quad a_{n_{i}}=n_{i}^{k} \quad(i=1,2, \ldots)
$$

so that the convergence exponent of a_{n} is $\frac{1}{k}=\rho$, hence $f(z)$ is an integral function of order ρ and

$$
\begin{equation*}
m(r)=\prod_{n=1}^{\infty}\left|1-\frac{r}{a_{n}}\right| \tag{24}
\end{equation*}
$$

We shall prove that

$$
\bar{\lambda}\left[E\left(\log m(r)>r^{\rho-\varepsilon}\right)\right] \leqq \frac{\delta}{1+\delta}<1-2 \rho .
$$

Let $n_{i}^{k} \leqq r \leqq n_{i+1}^{k}$, then

$$
r=\alpha_{i} \tau-\beta_{i} \quad\left(n_{i} \leqq \tau \leqq n_{i+1}\right)
$$

so that

$$
\left|1-\frac{r}{a_{n}}\right|=\left|\frac{n-\tau}{n-\frac{\beta_{i}}{\alpha_{i}}}\right|=\left|\frac{n-\tau}{n-n_{i}+\eta_{i}}\right| \quad\left(n_{i} \leqq n \leqq n_{i+1}\right) .
$$

Since $\frac{r}{a_{n}}<1$ for $n>n_{i+1}$, we have by putting $m=[\tau]$, if $\tau \leqq n_{i+1}-1$

$$
\begin{aligned}
m(r) \leqq \prod_{n<n_{i}} \mid & \left.\frac{a_{n}-r}{a_{n}}\right|_{n_{i}} ^{m}(\tau-n) \prod_{m+1}^{n_{i+1}}(n-\tau) \quad \prod_{n_{i}}^{n_{i+1}}\left(n-n_{i}+\eta_{i}\right) \\
& \leqq n_{i+1}^{k n_{i}} \frac{\Gamma\left(\tau-n_{i}+1\right) \Gamma\left(n_{i+1}-\tau+1\right) \Gamma\left(\eta_{i}\right)}{\Gamma(\tau-m) \Gamma(m+1-\tau) \Gamma\left(n_{i+1}-n_{i}+1+\eta_{i}\right)}
\end{aligned}
$$

Since $\Gamma(z)$ has a pole of the first order at $z=0$, we have from (22),

$$
\Gamma\left(\eta_{i}\right) \leqq \text { const. } \frac{1}{\eta_{i}} \leqq \text { const. } n_{i+1}^{k-1}
$$

so that

$$
\begin{aligned}
& m(r) \leqq \text { const. } n_{i+1}^{k^{\prime} n_{i}} \frac{\Gamma\left(\tau-n_{i}+1\right) \Gamma\left(n_{i+1}-\tau+1\right)}{\Gamma\left(n_{i+1}-n_{i}+1+\eta_{i}\right)} \\
& \quad \leqq \text { const. } n_{i+1}^{k^{\prime} n_{i}} \frac{\Gamma\left(\tau-n_{i}+1\right) \Gamma\left(n_{i+1}-\tau+1\right)}{\Gamma\left(n_{i+1}-n_{i}+1\right)} \quad\left(k^{\prime}=k+1\right)
\end{aligned}
$$

If $n_{i} \leqq \tau \leqq n_{i}+1$, or $n_{i+1}-1 \leqq \tau \leqq n_{i+1}$, then we have easily

$$
\begin{equation*}
m(r) \leqq \text { const. } n_{i+1}^{k^{\prime} n_{i}} \tag{25}
\end{equation*}
$$

If $n_{i}+1 \leqq \tau \leqq n_{i+1}-1$, then by Stirling's formula,

$$
\begin{aligned}
& \quad \Phi(\tau)=\frac{\Gamma\left(\tau-n_{i}+1\right) \Gamma\left(n_{i+1}-\tau+1\right)}{\Gamma\left(n_{i+1}-n_{i}+1\right)} \\
& \leqq \text { const. } \sqrt{\frac{\left(\tau-n_{i}\right)\left(n_{i+1}-\tau\right)}{n_{i+1}-n_{i}}\left(\frac{\tau-n_{i}}{e}\right)^{\tau-n_{i}}\left(\frac{n_{i+1}-\tau}{e}\right)^{n_{i+1}-\tau} /\left(\frac{n_{i+1}-n_{i}}{e}\right)^{n_{i+1}-n_{i}}} \\
& \leqq \text { const. } \sqrt{n_{i+1}} \frac{\left(\tau-n_{i}\right)^{\tau-n_{i}}\left(n_{i+1}-\tau\right)^{n_{i+1}-\tau}}{\left(n_{i+1}-n_{i}\right)^{n_{i+1}-n_{i}}}
\end{aligned} .
$$

Since $\left(\tau-n_{i}\right)^{\tau-n_{i}}\left(n_{i+1}-\tau\right)^{n_{i+1}-\tau}$ attains its maximum at $\tau_{0}=\frac{n_{i}+n_{i+1}}{2}$ and
its value at τ_{0} is $\left(\frac{n_{i+1}-n_{i}}{2}\right)^{n_{i+1}-n_{i}}$, we have

$$
\Phi(\tau) \leqq \text { const. } \sqrt{n_{i+1}} / 2^{n_{i+1}-n_{i}} \leqq \text { const. },
$$

so that for $n_{i}^{k} \leqq r \leqq n_{i+1}^{k}$,

$$
\begin{equation*}
m(r) \leqq \text { const. } n_{i+1}^{k^{\prime} n_{i}}, \tag{26}
\end{equation*}
$$

or $\quad \log m(r) \leqq$ const. $n_{i} \log n_{i+1} \leqq$ const. $n_{i}^{1+\frac{s}{2}}<n_{i}^{1+s}$

$$
\begin{equation*}
=n_{i}^{\frac{1}{\rho}(1+\delta)(\rho-\varepsilon)}=n_{i}^{k(1+\delta)(\rho-\varepsilon)} . \tag{27}
\end{equation*}
$$

Hence $\quad \log m(r) \leqq r^{\rho-\varepsilon}$ for $n_{i}^{k(1+\delta)} \leqq r \leqq n_{i+1}^{k}$,
so that $\quad E=E\left(\log m(r)>r^{\rho-8}\right)$
is contained in $\left\{I_{i}\right\}$, where $I_{i}=\left[n_{i}^{k}, n_{i}^{k(1+\delta)}\right]$. Now
$\sum_{\nu=1} \int_{I_{\nu}} \frac{d r}{r}=k \delta\left(\log n_{i}+\log n_{i-1}+\cdots+\log n_{1}\right) \leqq k \delta\left(\log n_{i}+(i-1) \log n_{i-1}\right)$.
Since $n_{i} \geqq n_{i-1}^{2}$, we have $i=O\left(\log \log n_{i}\right)$, so that

$$
\begin{aligned}
\sum_{\nu=1}^{i} \int_{I_{\nu}} \frac{d r}{r} & \leqq k \delta\left(\log n_{i}+O\left(\log n_{i-1}\right)^{2}\right) \leqq k \delta\left(\log n_{i}+O\left(\log \log n_{i}\right)^{2}\right) \\
& \leqq k \delta(1+\eta) \log n_{i}, \quad(\eta \rightarrow 0 \text { with } i \rightarrow \infty)
\end{aligned}
$$

Hence if $\quad n_{i}^{k} \leqq r \leqq n_{i}^{k(1+\delta)}$,

$$
\begin{aligned}
& \frac{1}{\log r} \int_{B(1, r)} \frac{d r}{r} \leqq \frac{1}{\log r} \sum_{\nu=1}^{i-1} \int_{I_{\nu}} \frac{d r}{r}+\frac{1}{\log r} \int_{n_{i}^{k}}^{r} \frac{d r}{r} \leqq \frac{k \delta(1+\eta) \log n_{i-1}}{\log r} \\
& +\left(1-\frac{\log n_{i}^{k}}{\log r}\right) \leqq \frac{k \delta(1+\eta) \log n_{i-1}}{k \log n_{i}}+\left(1-\frac{\log n_{i}^{k}}{\log n_{i}^{k(1+\delta)}}\right)=o(1)+\frac{\delta}{1+\delta} .
\end{aligned}
$$

From this we have

$$
\bar{\lambda}(E)=\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \int_{E(1, r)} \frac{d r}{r} \leqq \frac{\delta}{1+\delta}<1-2 \rho .
$$

5. Some remarks.

1. Let $f(z)$ be an integral function of finite order ρ and D be a domain, which contains $z=0$ and $z=\infty$ lies on its boundary Λ and $\log |f(z)| \leqq k \log r(|z|=r, k>0)$ on Λ. We define $\bar{\theta}(r)$ for D as in §3. Let $\mathrm{C}:|z|=a$ be a circle contained in D and we choose a constant $K>0$, such that $\log |f(z)|-k \log |z|-K<0$ on C and $\log M(a)+k \log a+K>0$. Let z_{0} be a point of D, such that $\log \left|f\left(z_{0}\right)\right|-k \log \left|z_{0}\right|-K>0\left(\left|z_{0}\right|=r_{0}>a\right)$. Since $\log M(r)$ is a convex function of $\log r$ and $\lim _{r \rightarrow \infty} \frac{\log M(r)}{\log r}=\infty$, $\log M(r)-k \log r>0$ for large $r>0$, hence by (6),

$$
\begin{aligned}
& 0<\log \left|f\left(z_{0}\right)\right|-k \log \left|z_{0}\right|-K \leqq(\log M(r)-k \log r+K) u_{r}\left(z_{0}\right) \\
& \quad \leqq \text { const. }(\log M(r)-k \log r+K) e^{-\pi \int_{2 r_{0}}^{\frac{r}{2} \frac{d r}{r(r)}} \quad\left(r>4 r_{0}\right)}
\end{aligned}
$$

From this we have

Theorem 2. Let $f(z)$ be an integral function of finite order ρ and $\log |f(z)| \leqq k \log r(k>0)$ on the boundary 1 of an infinite domain D, then

$$
\bar{\lambda}(\Lambda)=\varlimsup_{r \rightarrow \infty} \frac{2 \pi}{\log r} \int_{1}^{r} \frac{d r}{r \bar{\theta}(r)} \leqq 2 \rho .
$$

Theorem 3. Let $f(z)$ be an integral function of order $\rho\left(0<\rho<\frac{1}{2}\right)$, then

$$
\underline{\lambda}[E(\log m(r)>k \log r)] \geqq 1-2 \rho>0 \quad(k>0)^{5)} .
$$

Let $\varphi(r)$ be an increasing function of r, such that $\varlimsup_{r \rightarrow \infty} \frac{\varphi(r)}{\log r}=\infty$, then for any $0<\rho<1$, there exists an integral function of order ρ, such that

$$
\underline{\lambda}[E(\log m(r)>\varphi(r))]=0 .
$$

Proof. The first part follows from Theorem 2, since the set E of r, such that $|z|=r$ meets Λ coincides with $E=E(\log m(r) \leqq k \log r)$ and $\bar{\theta}(r) \leqq 2 \pi$ for $r \in E$ and $\bar{\theta}(r)=\infty$ otherwise. We shall prove the second part. We put $k=\frac{1}{\rho}>1$. Since $\varlimsup_{r \rightarrow \infty} \frac{\varphi(r)}{\log r}=\infty$, we can choose positive integers n_{i}, such that $1<n_{1}<n_{2}<\ldots<n_{i} \rightarrow \infty, \frac{n_{i+1}}{n_{i}} \rightarrow \infty$ and

$$
\frac{\varphi\left(n_{i+1}^{\frac{k}{i+1}}\right)}{\log \left(n_{i+1}^{\frac{k}{i+1}}\right)} \geqq(i+1)^{2} n_{i}
$$

or

$$
\begin{equation*}
\varphi\left(n_{i+1}^{\frac{k}{i+1}}\right) \geqq k(i+1) n_{i} \log n_{i+1} . \tag{28}
\end{equation*}
$$

With these n_{i}, we construct an integral function $f(z)$ of order ρ as (23) in the proof of Theorem 1 (iii). Then for $n_{i}^{k} \leq r \leq n_{i+1}^{k}$, we have by (26), (28),

$$
\log m(r) \leqq \text { const. } n_{i} \log n_{i+1} \leqq \varphi\left(n_{i+1}^{\frac{k}{i+1}}\right) \leqq \varphi\left(n_{i+1}^{k \dot{s}}\right) \quad(0<\delta<1),
$$

so that

$$
\log m(r) \leqq \varphi(r) \quad \text { for } \quad n_{i+1}^{k s} \leqq r \leqq n_{i+1}^{k} .
$$

Since

$$
\int_{I_{i}} \frac{d r}{r}=(1-\delta) \log n_{i+1}^{k}, \quad I_{i}=\left[n_{i+1}^{k \delta}, n_{i+1}^{k}\right],
$$

and δ is arbitrary, we have $\bar{\lambda}[E(\log m(r) \leqq \varphi(r))]=1$, so that

$$
\underline{\lambda}[E(\log m(r)>\varphi(r))]=0 .
$$

6. Dirichlet's problem with an unbounded boundary value.
7. Let D be a domain on the z-plane, which contains $z=\infty$ on its boundary Λ and $\varphi(z)$ be a given continuous function on Λ. In the usual Dirichlet's problem, $\varphi(z)$ is assumed to be bounded. If $\varphi(z)$ is unbounded, there exists, in general, no harmonic function in
5) M. Inoue l.c. 3)
D, which assumes the value $\varphi(z)$ on Λ. We consider a special case, where $\varphi(z)=r^{k} \quad(|z|=r, k>0)$ and shall prove

Theorem 4. (i) $I f$

$$
\underline{\lambda}(\Lambda)=\lim _{r \rightarrow \infty} \frac{2 \pi}{\log r} \int_{1}^{r} \frac{d r}{r \bar{\theta}(r)}>2 k,\left(\alpha=\frac{1}{2} \lambda(\Lambda)-k>0\right),
$$

then there exists a harmonic function $u(z)$ in D, which assumes the value r^{k} at regular points of Λ and

$$
r^{k} \leqq u(z) \leqq \text { const. } \frac{1}{r^{\alpha-\varepsilon}} e^{\pi \int_{1}^{2 r} \frac{d r}{r \hat{\theta}(r)}} \quad(|z|=r) \text { in } D
$$

for any $\varepsilon>0$.
(ii) $I f$

$$
\underline{\lambda}^{*}(\Lambda)=\frac{\lim }{r / a \rightarrow \infty} \frac{2 \pi}{\log (r / a)} \int_{a}^{r} \frac{d r}{r \bar{\theta}(r)}>2 k,
$$

then

$$
r^{k} \leq u(z) \leqq \text { const. } r^{k} \quad \text { in } D
$$

Proof. (i) Let $D_{r}^{0}, \bar{\theta}(r), u_{r}(z)$ be defined as in §3. Then by (6),

$$
\begin{equation*}
u_{r}\left(z_{0}\right) \leqq \text { const. } e^{-\pi \int_{2 r_{0}}^{\frac{r}{2} \frac{d r}{r \bar{\theta}(r)}}} \quad\left(\left|z_{0}\right|=r_{0}, r \geqq 4 r_{0}\right) \tag{29}
\end{equation*}
$$

By the hypothesis,

$$
\begin{equation*}
\pi \int_{1}^{r} \frac{d r}{r \bar{\theta}(r)} \geqq k_{1} \log r \quad\left(k_{1}>k, r \geqq R_{0}\right) \tag{30}
\end{equation*}
$$

so that

$$
\begin{equation*}
u_{r}\left(z_{0}\right) \leqq \text { const. } e^{\pi \int_{1}^{2 r} \frac{d r}{r \bar{\theta}(r)}} e^{-\pi \int_{1}^{\frac{r}{2}} \frac{d r}{r \bar{r}(r)} \leqq \text { const. } \frac{1}{r^{k_{1}}} e^{\pi \int_{1}^{2 r_{0}} \frac{d r}{r \overline{(}(r)}}\left(r \geqq 4 r_{0}\right) ~} \tag{31}
\end{equation*}
$$

Let Λ_{r} be the part of Λ, which lies in $|z|<r$ and $v_{r}(z)$ be a harmonic function in D, such that $v_{r}(z)=0$ on Λ_{r} and $v_{r}(z)=1$ on $\Lambda-\Lambda_{r}$ at its regular points. Then

$$
\begin{equation*}
v_{r}(z) \leqq u_{r}(z) \quad \text { in }|z|<r, \tag{32}
\end{equation*}
$$

so that by (31) the integral

$$
\begin{equation*}
u(z)=k \int_{0}^{\infty} v_{r}(z) r^{k-1} d r \tag{33}
\end{equation*}
$$

converges and represents a harmonic function in D. We can prove similarly as the proof of Lemma 4, that $u(z)=r^{k}$ on Λ at its regular points. Hence a harmonic function $u(z)$, which satisfies the condition of the theorem exists.
(ii). Let $z_{0}\left(\left|z_{0}\right|=r_{0}\right)$ be any point of D. Then by (31), (32), (33),

$$
\begin{aligned}
u\left(z_{0}\right) & =k \int_{0}^{4 r_{0}} v_{r}\left(z_{0}\right) r^{k-1} d r+k \int_{4 r_{0}}^{\infty} v_{r}\left(z_{0}\right) r^{k-1} d r \\
& \leqq k \int_{0}^{4 r_{0}} r^{k-1} d r+\text { const. } e^{\pi \int_{1}^{2 r_{0}} \frac{d r}{r \bar{\theta}(r)} \int_{4 r_{0}}^{\infty} \frac{d r}{r^{1+k_{1}-k}}} \\
& \leqq\left(4 r_{0}\right)^{k}+\text { const. } \frac{1}{r_{0}^{k_{1}-k}} e^{\pi \int_{1}^{2 r_{0}} \frac{d r}{r \overline{(}(r)}},
\end{aligned}
$$

Since by (30)

$$
e^{\pi \int_{1}^{2 r_{0}} \frac{d r}{r \bar{\theta}(r)}} \geqq\left(2 r_{0}\right)^{k_{1}} \quad\left(2 r_{0} \geqq R_{0}\right),
$$

we have

$$
u\left(z_{0}\right) \leqq \text { const. } \frac{1}{r_{0}^{k_{1}-k}} e^{\pi} \int_{1}^{2 r_{0}} \frac{d r}{r \bar{r}(r)}
$$

Since k_{1} is any number, such that $\frac{1}{2} \lambda(\Lambda)>k_{1}>k$, we have

$$
u\left(z_{0}\right) \leqq \text { const. } \frac{1}{r_{0}^{\alpha-\varepsilon}} e^{\pi \int_{1}^{2 r_{e}} \frac{d r}{r \bar{\theta}(r)}}
$$

for any $\varepsilon>0$.
(iii). Next we shall prove that $r^{k} \leqq u(z)$ in D. Let $V_{R}(z)$ be a harmonic function in D_{R}^{0}, such that $V_{R}(z)=r^{k}(|z|=r)$ on the whole boundary of D_{R}^{0}. Then since r^{k} is subharmonic, we have

$$
r^{k} \leqq V_{R}(z) \quad \text { in } D_{R}^{0}
$$

Let $u(z)$ be the harmonic function constructed in (i), we have by the maximum principle,

$$
r^{k} \leqq V_{R}(z) \leqq R^{k} u_{R}(z)+u(z) \quad \text { in } D_{R}^{0} \quad(R \geqq r) .
$$

Since by (31), $R^{k} u_{R}(z) \rightarrow 0(R \rightarrow \infty)$, we have $r^{k} \leqq u(z)$ in D.
(iv). If

$$
\underline{\lambda}^{*}(\Lambda)=\frac{\lim _{r / a \rightarrow \infty}}{} \frac{2 \pi}{\log (r / a)} \int_{a}^{r} \frac{d r}{r \bar{\theta}(r)}>2 k,
$$

then we can prove similarly as Lemma 4,

$$
u(z) \leqq \text { const. } r^{k} \quad \text { in } D .
$$

Hence our theorem is proved.
2. By means of the above theorem, we can prove similarly as Theorem 1 the following theorem.

Theorem 5. Let $f(z)$ be an integral function of finite order $\rho>0$ and $\log |f(z)| \leqq r^{\rho-8}(\varepsilon>0)$ on the boundary Λ of an infinite domain D, then

$$
\underline{\lambda}^{*}(\Lambda)=\lim _{r / a \rightarrow \infty} \frac{2 \pi}{\log (r / a)} \int_{a}^{r} \frac{d r}{r \bar{\theta}(r)} \leqq 2 \rho .
$$

Compare this theorem with Theorem 2.
If $f(z)$ is of regular growth, such that

$$
\lim _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}=\rho,
$$

then the set $\log |f(z)|>r^{\rho-\varepsilon}$ contains an infinite domain for any $\varepsilon>0$. As an application of Theorem 5, we shall prove the following two theorems.

Tehorem 6. Let $f(z)$ be an integral function of finite order $\rho>0$ and Λ be the closed set of points, such that $\log |f(z)| \leqq r^{p-\varepsilon}(|z|=r, \varepsilon>0)$
and Λ_{θ} be the intersection of Λ with a half-line: arg $z=\theta$. Then

$$
\underline{\lambda}^{*}\left(\Lambda_{\theta}\right) \leqq 2 \rho .
$$

Proof. Since $\log |f(z)| \leqq r^{\rho-z}$ on Λ_{θ}, if we apply Theorem 5 to the outside of Λ_{θ}, then we have our theorem, since $\bar{\theta}(r)=2 \pi$, when $|z|=r$ meets Λ_{θ} and $\bar{\theta}(r)=\infty$ otherwise.
Theorem 7. Let $f(z)$ be an integral function of finite order $\rho>0$ and $M(r)=\operatorname{Max}_{|z|=r}|f(z)|$. Then

$$
\bar{\lambda}^{*}\left[E\left(\log M(r)>r^{\rho-\varepsilon}\right)\right]=1
$$

for any $\varepsilon>0$ and for any $0<\rho<\infty$, there exists an integral function of order ρ, such that

$$
\bar{\lambda}\left[E\left(\log M(r)>r^{\rho-\varepsilon}\right)\right]<1, \quad 0<\varepsilon<\operatorname{Min} .\left(\frac{\rho^{2}}{1+\rho}, \frac{\rho}{2}\right) .
$$

Proof. (i). Let

$$
\begin{equation*}
E=E\left(\log M(r) \leqq r^{\rho_{1}}\right) \quad\left(\rho_{1}=\rho-\varepsilon\right), \tag{34}
\end{equation*}
$$

then E consists of a countable number of disjoint closed intervals $I_{\nu}=\left[r_{\nu}, r_{\nu}^{\prime}\right](\nu=1,2, \ldots)$ and

$$
\log |f(z)| \leqq r^{\rho_{1}} \quad(|z|=r)
$$

in the closed ring domain $\Delta_{\nu}: r_{\nu} \leqq|z| \leqq r_{\nu}^{\prime}$.
We construct a canal in Δ_{ν}, such that we take off from Δ_{ν} its part: $|\arg z|<\delta, r_{\nu} \leqq|z| \leqq r_{\nu}^{\prime}$ and Δ_{ν}^{0} be the remaining closed domain and put $\Delta=\sum_{\nu=1}^{\infty} \Delta_{\nu}^{0}$ and let D be the complementary set of Δ. Then D is a connected infinite domain and $\log |f(z)| \leqq r^{\rho_{1}}$ on its boundary A. Hence by Theorem 5

$$
\frac{\lim }{r / a \rightarrow \infty} \frac{2 \pi}{\log (r / a)} \int_{a}^{r} \frac{d r}{r \bar{\theta}(r)} \leqq 2 \rho .
$$

Since $\bar{\theta}(r)=2 \delta$ for $r \in E$ and $\bar{\theta}(r)=\infty$ otherwise, we have

$$
\lambda_{-}^{*}(E)=\frac{\lim }{r / a \rightarrow \infty} \frac{1}{\log (r / a)} \int_{\nabla(a, r)} \frac{d r}{r} \leqq \frac{\rho}{\pi} 2 \delta,
$$

so that for $\delta \rightarrow 0$, we have $\underline{\lambda}^{*}(E)=0$, hence

$$
\bar{\lambda}^{*}\left[E\left(\log M(r)>r^{\rho-\varepsilon}\right)\right]=1
$$

(ii). Next we shall prove that for any $0<\rho<\infty$, there exists an integral function of order ρ, such that

$$
\bar{\lambda}\left[E\left(\log M(r)>r^{\rho-\varepsilon}\right)\right]<1, \quad 0<\varepsilon<\operatorname{Min} .\left(\frac{\rho^{2}}{1+\rho}, \frac{\rho}{2}\right) .
$$

First suppose that $0<\rho<1$ and $0<\varepsilon<\frac{\rho^{2}}{1+\rho}$, then

$$
\rho-\varepsilon>\frac{\rho}{1+\rho}>0, \quad \frac{1}{\rho}(1+\rho)(\rho-\varepsilon)=1+s \quad(s>0) .
$$

With this $s>0$, we construct an integral function $f(z)$ of order ρ as (23) in the proof of Theorem 1 (iii). Let

$$
\begin{equation*}
n_{i}^{k+1} \leqq r \leqq n_{i+1}^{k-1} \quad\left(k=\frac{1}{\rho}>1\right) \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
M(r)=\Pi_{n<n_{i}}\left(1+\frac{r}{a_{n}}\right)_{n}^{n_{i+1}}\left(1+\frac{r}{a_{n}}\right) \prod_{n>n_{i+1}}\left(1+\frac{r}{a_{n}}\right)=\Pi_{1} \cdot \Pi_{2} \cdot \Pi_{3} \tag{36}
\end{equation*}
$$

Now

$$
\begin{equation*}
\Pi_{1} \leqq\left(2 n_{i+1}\right)^{k n} \tag{37}
\end{equation*}
$$

Since $a_{n}=\alpha_{i} n-\beta_{i}, \quad a_{n_{i}}=n_{i}^{k}, \quad \alpha_{i} \sim n_{i+1}^{k-1}$,

$$
\begin{align*}
\log I_{2} & =\sum_{n_{i}}^{n_{i+1}} \log \left(1+\frac{r}{a_{n}}\right) \leq \log \left(1+\frac{r}{a_{n_{i}}}\right)+\int_{n_{i}}^{n_{i+1}} \log \left(1+\frac{r}{\alpha_{i} x-\beta_{i}}\right) d x \\
& \leqq \log \left(1+\frac{r}{n_{i}^{k}}\right)+\int_{n_{i}}^{n_{i+1}} \frac{r}{\alpha_{i} x-\beta_{i}} d x \leq k \log n_{i+1}+\frac{r}{\alpha_{i}} \log \frac{n_{i+1}^{k}}{n_{i}^{k}} \\
& \leqq k \log n_{i+1}+\text { const. } \frac{n_{i+1}^{k-1}}{n_{i+1}^{k-1}} \log n_{i+1} \leqq \text { const. } \log n_{i+1} \tag{38}
\end{align*}
$$

Similarly for $j \geqq i+1$,

$$
\begin{aligned}
& \sum_{n_{j}}^{n_{j+1}} \log \left(1+\frac{r}{a_{n}}\right) \leqq \log \left(1+\frac{r}{n_{j}^{k}}\right)+\frac{r}{\alpha_{j}} \log \frac{n_{j+1}^{k}}{n_{j}^{k}} \\
& \quad \leq \text { const. } r\left(\frac{1}{n_{j}^{k}}+\frac{1}{n_{j+1}^{k-1}} \log n_{j+1}\right) \leqq \text { const. } \frac{r}{n_{j}^{k}},
\end{aligned}
$$

so that

$$
\log \Pi_{3} \leqq \text { const. } r \sum_{\nu=1}^{\infty} \frac{1}{n_{i+\nu}^{k}}
$$

Since $n_{i+1} \geqq 2 n_{i}, n_{i+\nu} \geqq 2^{\nu-1} n_{i+1}$, we have

$$
\text { log } \begin{align*}
\Pi_{3} \leqq \text { const. } \frac{r}{n_{i+1}^{k}} \sum_{\nu=0}^{\infty} \frac{1}{2^{k \nu}} & \leqq \text { const. } \frac{r}{n_{i+1}^{k}} \leqq \text { const. } \frac{n_{i+1}^{k-1}}{n_{i+1}^{k}} \\
& =\text { const. } \frac{1}{n_{i+1}} \rightarrow 0 \tag{39}
\end{align*}
$$

Hence from (37), (38), (39),
$\log M(r) \leqq$ const. $n_{i} \log n_{i+1} \leqq$ const. $n_{i}^{1+s / 2}<n_{i}^{1+s}$

$$
=n_{i}^{(k+1)(p-\varepsilon)} \leqq r^{\rho-\varepsilon} \quad \text { for } \quad n_{i}^{k+1} \leqq r \leqq n_{i+1}^{k-1}
$$

so that $E=E\left(\log M(\mathrm{r})>r^{p-q}\right)$ is contained in $\left\{I_{i}\right\}$, where
$I_{i}=\left[n_{i}^{k-1}, n_{i}^{k+1}\right]$. Since

$$
\int_{r_{i}} \frac{d r}{r}=\frac{2 \rho}{1+\rho} \log n_{i}^{k+1}
$$

we have similarly as the proof of Theorem 1 (iii),

$$
\bar{\lambda}(E)=\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \int_{E(1, r)} \frac{d r}{r} \leqq \frac{2 \rho}{1+\rho}<1
$$

Next suppose that $1 \leqq \rho<\infty$. We choose a rational number
$\lambda=p / q$, such that $\lambda>\rho$, where p, q are positive integers. Then $\rho_{1}=\rho / \lambda<1$. We construct an integral function $f_{1}(z)$ of order ρ_{1}, such that

$$
\begin{equation*}
\bar{\lambda}\left[E\left(\log M_{1}(r)>r^{\rho_{1}-\varepsilon_{1}}\right)\right]<1, \quad 0<\varepsilon_{1}<\frac{\rho_{1}^{2}}{1+\rho_{1}}=\frac{\rho^{2}}{\lambda(\lambda+\rho)}, \tag{40}
\end{equation*}
$$

where $M_{1}(r)=\operatorname{Max}_{|z|=r} .\left|f_{1}(z)\right|$. We put $z=w^{\lambda}$ and let

$$
\begin{gather*}
f(w)=\prod_{\nu=0}^{q-1}\left(f_{1}\left(\omega^{\nu} z\right)-a\right)=\prod_{\nu=0}^{q-1}\left(f_{1}\left(\omega^{\nu} w^{\lambda}\right)-a\right) \quad\left(\omega=e^{\frac{2 \pi i}{q}}\right), \\
M(R)=\operatorname{Max}_{|\omega|=R} \cdot|f(w)| \quad\left(|w|=R,|z|=r, r=R^{\lambda}\right) . \tag{41}
\end{gather*}
$$

Then for a certain $a f(w)$ is an integral function of order $\rho^{6)}$ and

$$
\begin{equation*}
M(R) \leqq\left[M_{1}(r)\right]^{q+1} \quad\left(r \geqq r_{0}\right) \tag{42}
\end{equation*}
$$

Since the logarithmic density is invariant for the transformation $r=R^{\lambda}$, we have from (40), (42),
$\bar{\lambda}\left[E\left(\log M(R)>(q+1) R^{\lambda \rho_{1}-\lambda \varepsilon_{1}}\right)\right]=\bar{\lambda}\left[E\left(\log M(R)>(q+1) R^{\rho-\lambda \varepsilon_{1}}\right)\right]<1$.
Hence for any $0<\eta<1$,

$$
\begin{equation*}
\bar{\lambda}\left[E\left(\log M(R)>R^{\rho-\eta_{\lambda \varepsilon_{1}}}\right)\right]<1 . \tag{43}
\end{equation*}
$$

Since $\eta \lambda \varepsilon_{1}<\eta \frac{\rho^{2}}{\lambda+\rho} \rightarrow \frac{\rho}{2}$ for $\eta \rightarrow 1, \lambda \rightarrow \rho$, we have

$$
\bar{\lambda}\left[E\left(\log M(R)>R^{\rho-\varepsilon}\right)\right]<1
$$

for any $\varepsilon<\rho / 2$. Since

$$
\begin{aligned}
\operatorname{Min} .\left(\frac{\rho^{2}}{1+\rho}, \frac{\rho}{2}\right) & =\frac{\rho^{2}}{1+\rho} & \text { for } 0<\rho \leqq 1 \\
& =\frac{\rho}{2} & \text { for } 1 \leqq \rho<\infty
\end{aligned}
$$

our theorem is proved.
6) G. Valiron: Lectures on the general theory of integral functions. p. 190.

[^0]: 1) A. S. Besicovitch: On integral functions of order <1. Math. Ann. 97 (1927). Besicovitch's proof is valid only for functions of regular growth. The general case was proved by K. Pennycuick: On a theorem of Besicovitch: Jour. London Math. Soc. 10 (1935). Bokjellberg: On certain integral and harmonic functions. Thèse. Upsala (1984). M. Inoue: Sur le module minimum des fonctions sousharmoniques et des fonctions entières d'ordre<1 $\frac{1}{2}$. Mem. Fac. Sci. Kyusyu Univ. ser. A. Vol. IV. No. 2 (1949).
[^1]: 2) M. Tsuji: A theorem on tbe majoration of harmonic measure and its applications. Tohoku Math. Jour. 3 (1951).
 3) Beurling: Etudes sur un problème de majoration. Thèse Upsala (1933). M. Inoue: Une ètude sur les fonctions sousharmoniques et ses applications aux fonctions holomorphes. Mem. Fac. Sci. Kyusyu Univ. (1943).
