39. On Conformal Slit Mapping of MultiplyConnected Domains.

By Yûsaku Komatu.
(Comm. by K. Kunugi, m.J.A., July 12, 1950.)

1. We choose, as a basic domain of standard type in the theory of conformal mapping of $n(\geq 3)$-ply connected domains, a concentric circular ring cut along $n-2$ disjoint concentric circular slits, and denote the boundary components of such a domain, D_{Q} say, by

$$
\begin{array}{lr}
C^{(1)}:|z|=1 ; & C^{(2)}:|z|=Q(<1) ; \\
C^{(j)}:|z|=m_{j}, & \theta_{j} \leqq \arg z \leqq \theta_{j}^{\prime}(3 \leqq j \leqq n)
\end{array}
$$

Each domain bounded by $n(\geqq 3)$ disjoint continua possesses $3 n-6$ (real) conformal invariants as its moduli. For instance, the moduli of the circular slit annulus D_{Q} may be given by the $3 n-6$ quantities

$$
Q, m_{j}(3 \leqq j \leqq n), \theta_{j}-\theta_{3}(3<j \leqq n), \boldsymbol{\theta}_{j}^{\prime}-\boldsymbol{\theta}_{3}(3 \leqq j \leqq n)
$$

Let $D_{Q_{0}}$ be a domain on the w-plane conformally equivalent to D_{Q} and obtained from a circular slit annulus of the same type as D_{Q} by cutting along a slit (Jordan arc) $\Gamma_{Q_{0}}$ which starts from a point on the exterior boundary component $|w|=1$. An extremal property given by Rengel ${ }^{11}$ shows that the radius Q_{0} of the interior boundary component of $D_{Q_{0}}$ never exceeds Q and is, moreover, always less than Q provided $D_{Q_{0}}$ does not coincide witn D_{Q}. Let now the function mapping D_{Q} schlicht and conformally onto $D_{Q_{0}}$ in such a way that the both peripheral boundary circumferences correspond each other, be denoted by

$$
w=f(z), \quad f(Q)=Q_{0} ;
$$

this mapping function is uniquely determined under the additional condition explicitly written here.

In case of simply-connected domains, the Lïwner's differential equation for slit mapping has been recognized as a very fruitful instrument in the theory, a brief proof of which may be given by making use of Poisson formula for functions regular analytic in a circle. ${ }^{2)}$ This equation can also be generalized to the doubly-con-

[^0]nected case with aid of Villat's formula for functions regular analytic in an annulus. ${ }^{3}$, ") The aim of the present Note is to generalize the equation to the case of multiply-connected domains. We shall, namely, introduce a one-parameter family of mapping functions:
$$
\{f(z, q)\}, \quad Q \geqq q \geqq Q_{0}
$$
connecting the terminal functions z and $f(z)$, and then obtain a differential equation satisfied by $f(z, q)$ as a function of the parameter q.
2. We suppose that a sub-arc of $\Gamma_{Q_{0}}$ possessing interior endpoint common with it be deleted from the boundary of $D_{Q_{0}}$. Let
$$
w=h\left(w_{q}, q\right), \quad h(q, q)=Q_{0}
$$
be the function which maps an annulus with $n-2$ concentric circular slits onto the domain thus obtained, and hence containing $D_{Q_{0}}$, in such a manner that the interior and exterior boundary circumferences correspond each other, q denoting bere the radius of the interior boundary circunference of the equivalent domain laid on w_{q}-plane. The domain corresponding to $D_{Q_{0}}$ itself by this mapping be D_{q}, namely we put $h\left(D_{q}, q\right)=D_{Q_{0}}$. Then D_{q} is a domain of the same type as $D_{Q_{0}}$ whose slit starting from a point on $\left|w_{q}\right|=1$ is an arc corresponding to the deleted part of $\Gamma_{q_{0}}$ by the mapping $w=h\left(w_{q}, q\right)$. By monotony character of the modulus q, the points on $\Gamma_{q_{0}}$ and the values of the parameter $q\left(Q \geqq q \geqq Q_{0}\right)$ correspond in a one-to-one and monotonic way. Let the function mapping D_{Q} onto D_{q} be denoted by
$$
w_{q}=f(z, q), \quad f(\mathrm{Q}, q)=q
$$

The condition added here together with the one that the interior and exterior circumferences should correspond each other respectively determines the mapping function uniquely. Obviously, the functional equation

$$
f(z) \equiv f\left(z, Q_{0}\right)=h(f(z, q), q)
$$

holds good, and also $f(z, Q)=z$. The boundary components of the circular slit anulus ${ }^{5)} D_{q}+I_{q}$ be denoted by

[^1]\[

$$
\begin{aligned}
& C_{q}^{(1)}:\left|w_{q}\right|=1 ; \quad C_{q}{ }^{(2)}: \quad\left|w_{q}\right|=q(<1) ; \\
& C_{q}{ }^{(j)}:\left|w_{q}\right|=m_{j}(q), \quad \theta_{j}(q) \leqq \arg w_{q} \leqq \theta_{j}^{\prime}(q)(3 \leqq j \leqq n),
\end{aligned}
$$
\]

and the starting point on $C_{g}{ }^{(1)}$ of the slit Γ_{g} be $\bar{\gamma}(q) \equiv e^{-i \theta}(q)$.
Now, the function mapping D_{q} onto $D_{p^{*}}$ with $Q>q>q^{*}>Q_{0}$ is given by

$$
W_{q^{*}}=f\left(f^{-1}\left(w_{q}, q\right), q^{*}\right) \equiv \Phi\left(w_{q} ; q, q^{*}\right) \equiv \Phi\left(w_{q}\right)
$$

The points which correspond to the point $w_{q^{*}}=\bar{\gamma}\left(q^{*}\right)$, being doubly counted as boundary elements, by this mapping be denoted by $e^{i p_{0}\left(\eta, q^{*}\right)}$ and $e^{i \beta_{1}\left(q_{2} q^{*}\right)}$ with $\beta_{0}<\beta_{1}$. We then have

$$
\begin{array}{lll}
\left|\Phi\left(w_{q}\right)\right|=1 & \left(\left|w_{q}\right|=1,\right. & \left.\beta_{1} \leqq \arg w_{q} \leqq \beta_{0}+2 \pi\right) \\
\left|\Phi\left(w_{q}\right)\right|=q^{*} & \left(\left|w_{q}\right|=q,\right. & \left.0 \leqq \arg w_{q} \leqq 2 \pi\right)
\end{array}
$$

We introduce the Green function $G\left(\omega, w_{q} ; q\right)$ of the circular slit annulus $D_{q}+\Gamma_{q}$ laid on ω-plane possessing the pole at w_{q}, and denote a harmonic function conjugate to $G\left(\omega, w_{q} ; q\right)$ with respect to the variable $w_{q}=u_{q}+i v_{q}$ by

$$
H\left(\omega, w_{q} ; q\right)=\int^{w_{q}}\left(\frac{\partial G\left(\omega, w_{q} ; q\right)}{\partial u_{q}} d v_{q}-\frac{\partial G\left(\omega, w_{q} ; q\right)}{\partial v_{q}} d u_{q}\right),
$$

and then put

$$
F\left(\omega, w_{q} ; q\right)=G\left(\omega, w_{q} ; q\right)+i H\left(\omega, w_{q} ; q\right)
$$

Now, $\lg \left|\Phi\left(w_{q}\right) / w_{q}\right|$ is a harmonic function regular and onevalued in $D_{q}+\Gamma_{q}$. Hence, denoting by $\partial / \partial \nu$ the differentiation at boundary point ω in the direction of interior normal, we have

$$
\lg \left|\frac{\Phi\left(w_{q}\right)}{w_{q}}\right|=\frac{1}{2 \pi} \int \lg \left|\frac{\Phi(\omega)}{\omega}\right| \frac{\partial G\left(\omega, w_{q} ; q\right)}{\partial \nu} d s
$$

the integration being taken along the total boundary of $D_{q}+\Gamma_{q}$ with length parameter s in the positive sense. The branch which takes the real value $\lg \left(q^{*} / q\right)$ at $w_{q}=q$ is regular analytic and one-valued in $D_{q}+\Gamma_{g}$ and is expressed by the formula

$$
\lg \frac{\Phi\left(w_{q}\right)}{w_{g}}=\frac{1}{2 \pi} \int \lg \left|-\frac{\Phi(\omega)}{\omega}\right| \frac{\partial F\left(\omega, w_{q} ; q\right)}{\partial \nu} d s+i c
$$

c being a real constant. Remembering now the behavior of the function $\Phi\left(w_{g}\right)$ on both boundary circumferences, we have

$$
\begin{aligned}
\lg \frac{\Phi\left(w_{q}\right)}{w_{q}} & =\frac{1}{2 \pi} \int_{\mathcal{B}_{0}(q, q *)}^{\beta_{1}(\eta, q *)} \lg \left|\Phi\left(e^{i \varphi}\right)\right| \frac{\partial F\left(e^{i \varphi}, w_{q} ; q\right)}{\partial \nu} d \varphi \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \lg \frac{q^{*}}{q} \frac{\partial F\left(q e^{i \varphi}, w_{\eta} ; q\right)}{\partial \nu} q d \boldsymbol{\partial} \\
& +\frac{1}{2 \pi} \sum_{j=3}^{n} \int_{C_{q}(j)} \lg \frac{m_{j}\left(q^{*}\right)}{m_{j}(q)} \frac{\partial F^{\prime}\left(\omega, w_{q} ; q\right)}{\partial \nu} d s+i c,
\end{aligned}
$$

each integration in the last sum being taken along the both sides of each circular slit $C_{g}{ }^{(j)}(3 \leqq j \leqq n)$ in the positive sense with respect to $D_{q}+\Gamma_{q}$. Putting $w_{q}=f(z, q)$, the last equation becomes

$$
\begin{aligned}
\lg \frac{f\left(z, q^{*}\right)}{f(z, q)} & =\frac{1}{2 \pi} \int_{\rho_{0}(\tau, \pi *)}^{\beta_{1}\left(\tau, q^{*}\right)} \lg \left|\Phi\left(e^{i q}\right)\right| \frac{\partial F\left(e^{i \varphi}, w_{q} ; q\right)}{\partial \nu} d \varphi \\
& -\frac{1}{2 \pi} \lg \frac{q^{*}}{q} \int_{0}^{2 \pi} \frac{\partial F\left(q e^{i q}, w_{q} ; q\right)}{\partial \nu} q d \varphi \\
& +\frac{1}{2 \pi} \sum_{j=3}^{n} \lg \frac{m_{j}\left(q^{*}\right)}{m_{j}(q)} \int_{C_{g}(j)} \frac{\partial F\left(\omega, w_{q} ; q\right)}{\partial \nu} d s+i c\left(w_{q}=f(z, q)\right) .
\end{aligned}
$$

The harmonic measure of $C_{g}{ }^{(j)}$ at w_{q} with respect to $D_{q}+\Gamma_{g}$ is given by

$$
P_{j}\left(w_{q} ; q\right)=\frac{1}{2 \pi} \int_{C_{q}{ }^{(j)}} d H\left(\omega, w_{q} ; q\right)=\frac{1}{2 \pi} \int_{C_{q}{ }^{(j)}} \frac{\partial G\left(\omega, w_{q} ; q\right)}{\partial \nu} d s
$$

If we denote by $Q_{j}\left(w_{q} ; q\right)$ a harmonic function conjugate to $P_{j}\left(w_{q} ; q\right)$, then

$$
R_{j}\left(w_{q} ; q\right) \equiv P_{j}\left(w_{q} ; q\right)+i Q_{j}\left(w_{q} ; q\right)=\frac{1}{2 \pi} \int_{C_{j}} \frac{\partial F\left(\omega, w_{q} ; q\right)}{\partial \nu} d s
$$

and hence the equation obtained above may be written also in the form

$$
\begin{gathered}
\lg \frac{f\left(z, q^{*}\right)}{f(z, q)}=\frac{1}{2 \pi} \int_{\beta_{0}(\tau,, *)}^{\beta_{1}\left(q, q^{*}\right)} \lg \left|\Phi\left(e^{i q}\right)\right| \frac{\partial F\left(e^{i q}, w_{q} ; q\right)}{\partial \nu} d \varphi+R_{2}\left(w_{q} ; q\right) \lg \frac{q^{*}}{q} \\
\quad+\sum_{j==3}^{n} R_{j}\left(w_{a} ; q\right) \lg \frac{m_{j}\left(q^{*}\right)}{m_{j}(q)}+i c .
\end{gathered}
$$

In order to eliminate the constant c, we snbstitute $z=Q$ and hence $w_{q}=q$ in the last equation. Subtracting the thus obtained equation from the last equation itself, we obtain finally

$$
\begin{aligned}
& \left.\lg \frac{f\left(z, q^{*}\right)}{f(z, q)}-\lg \frac{q^{*}}{q}=\frac{1}{2 \pi} \int_{\beta_{0}(\tau, \% *)}^{\beta_{1}\left(\tau, q^{*}\right)} \lg \right\rvert\, \mathscr{\Phi}\left(e^{i \varphi}\right)\left(\frac{\partial F\left(e^{i \varphi}, w_{q} ; q\right)}{\partial \nu}-\frac{\partial F\left(e^{i \varphi}, q ; q\right)}{\partial \nu}\right) d \mathcal{T}^{\prime} \\
&+\left(R_{2}\left(w_{q} ; q\right)-1\right) \lg \frac{q^{*}}{q}+\sum_{j=3}^{n} R_{j}\left(w_{q} ; q\right) \lg \frac{m_{j}\left(q^{*}\right)}{m_{j}(q)}
\end{aligned}
$$

since we may put $R_{2}(q ; q)=1$ and $R_{j}(q ; q)=0$ for $3 \leqq j \leqq n$.
On the other hand, applying the Cauchy's integral theorem to a branch of $\left(1 / w_{q}\right) \lg \left(\Phi\left(w_{q}\right) / w_{q}\right)$ regular and one-valued in $D_{q}+\Gamma_{q}$, we get

$$
\begin{aligned}
& 0=\Re \frac{1}{2 \pi i} \int \lg \frac{\Phi(\omega)}{\omega} \frac{d \omega}{\omega}=\frac{1}{2 \pi} \int \lg \left|\frac{\Phi(\omega)}{\omega}\right| d \arg \omega \\
& =\frac{1}{2 \pi} \int_{\beta_{0}\left(\tau, q^{*}\right)}^{\beta_{1}^{\left(\tau, q^{*}\right)}} \lg \left|\Phi\left(e^{i \varphi}\right)\right| d \varphi-\frac{1}{2 \pi} \int_{0}^{2 \pi} \lg \frac{q^{*}}{q} d \varphi+\frac{1}{2 \pi} \sum_{j=3}^{n} \int_{C_{q}} \operatorname{li}^{(j)} \frac{m_{j}\left(q^{*}\right)}{m_{j}(q)} d \arg \omega \\
& =\frac{1}{2 \pi} \int_{\beta_{0}\left(\tau_{0} q^{*}\right)}^{\beta_{1}\left(\rho, q^{*}\right)} \lg \left|\overline{\mathscr{T}}\left(e^{i \varphi}\right)\right| d \boldsymbol{\varphi}-\lg \frac{q^{*}}{q},
\end{aligned}
$$

or

$$
\frac{1}{2 \pi} \int_{\beta_{0}\left(\tau, \tau^{*}\right)}^{\beta_{1}\left(\tau, q^{*}\right)} \lg \left|\Phi\left(e^{i q}\right)\right| d \varphi=\lg \frac{q^{*}}{q} .
$$

Since $\beta_{0}\left(q, q^{*}\right)$ and $\beta_{1}\left(q, q^{*}\right)$ both tend to $\arg \bar{\gamma}(q)=-\theta(q)$ as $q^{*} \rightarrow q$, we conclude from the relations above obtained, by performing the limit-process $q^{*}-q \rightarrow 0$,

$$
\begin{aligned}
\frac{\partial \lg f(z, q)}{\partial \lg q} & =\frac{\partial F\left(\bar{\gamma}(q), w_{q} ; q\right)}{\partial \nu}-\frac{\partial F(\bar{\gamma}(q), q ; q)}{\partial \nu} \\
& +R_{2}\left(w_{q} ; q\right)+\sum_{j=3}^{n} R_{j}\left(w_{q} ; q\right) \frac{d \lg m_{j}(q)}{d \lg q}
\end{aligned}
$$

the fundamental differential equation which has been desired. The integration of this equation with initial condition $f(z, Q)=z$ will yield the mapping function $f(z)=f\left(z, Q_{0}\right)$.
3. In the last step of our preceding argument it will further be required to ensure that $f(z, q)$ and $m_{j}(q)(3 \leqq j \leqq n)$ are all differentiable with respect to q; the fact which will be proved in the following lines.

In case with no circular slit ($n=2$) the differentiability of $f(z, q)$ with respect to q is already known. ${ }^{6}$) In order to prove the same fact also in general case by induction, we suppose that n be greater than two and in ($n-1$)-ply connected case the function corresponding to $f(z, q)$ be known to be differentiable with respect to q. We
6) Cf. loc. cit. ${ }^{\text {B }}$
now construct an ($n-1$)-ply connected domain $\hat{D}_{Q_{0}}$, contained in $D_{Q_{0}}$, by cutting $D_{Q_{0}}$ along a Jordan cross-cut which connects an end-point of a circular slit, e.g. $C_{Q_{0}}^{(n)}$ say, with the interior end-point of the slit $\Gamma_{Q_{0}}$. Denote by \hat{D}_{Q} the domain which is contained in D_{Q} and corresponds to $\hat{D}_{Q_{0}}$ by the mapping $w=f\left(z, Q_{0}\right), w=w_{Q_{0}}, z=w_{Q}$, namely we put $\hat{D}_{Q_{0}}=f\left(\hat{D}_{Q}, Q_{0}\right)$. The circular slit annulus $\hat{D}_{\hat{Q}}$ on the $w_{\hat{Q}}$-plane, conformally equivalent to \hat{D}_{q}, can then be connected with $\hat{D}_{Q_{0}}$ by a family of the structure

$$
\hat{f}\left(w_{\hat{q}}, q\right)= \begin{cases}\hat{f}\left(w_{\hat{a}}, q\right) & (\hat{Q} \geqq q \geqq Q) \\ f\left(\hat{f}\left(w_{\hat{q}}, Q\right), q\right) & \left(Q \geqq q \geqq Q_{0}\right)\end{cases}
$$

By our assumption of the induction, any function of this family and, in particular, the function

$$
f\left(\hat{f}\left(w_{\hat{Q}}, Q\right), q\right) \quad\left(Q \geqq q \geqq Q_{0}, w_{\hat{Q}} \in \hat{D}_{\hat{Q}}, \hat{f}\left(w_{\hat{l}}, Q\right) \in \hat{D}_{Q}\right)
$$

is differentiable with respect to q. Hence, the same is valid for $f(z, q)\left(z \in \hat{D}_{Q}\right)$. Now, $D_{Q}-\hat{D}_{Q}$ being the image of the Jordan cross-cut $D_{Q_{0}}-\hat{D}_{Q_{0}}$ laid in $D_{Q_{0}}$, the freedom of its choice- $f(z, q)\left(Q \geqq q \geqq Q_{0}\right)$ remains invariant for any such a choice- shows that $f(z, q)\left(z \in D_{Q}\right)$ is also differentiable with respect to the parameter q.

Remembering the equation just prevenient to the limit-process we have been performed, we see that in case $n=3$ the function $m_{s}(q)$ is differentiable. In case $n>3$ may also, by a similar argument as above, be reduced to the triply-connected case where only one circular slit $C_{q}^{(j)}$ exists, and hence the differentiability of $m_{j}(q)$ is thus surely established.

Tokyo Institute of Technology.

[^0]: 1) E. Rengel: Über einige Schlitztheoreme der konformen Abbildung. Schriften d. Math. Sem. u. Inst. f. angew. Math. d. Univ. Berlin 1 (1932/3), 141-162. Cf. also H. Grötzsch: Über einige Extremalprobleme der konformen Abbildung, I. Leipziger Berichte 80 (1928), 367-376.
 2) Y. Komatu: Uiber einen Satz von Herrn Löwner. Proc. Imp. Acad. Tokyo 16 (1940), 512-514.
[^1]: 3) Y. Komatu: Untersuchungen über konforme Abbildung von zweifach zusammenhängenden Gebieten. Proc. Phys.-Math. Soc. Japan 25 (1943), 1-42.
 4) A brief proof of the Villat's formula is given in Y. Komatu, Sur la représentation de Villat pour les fonctions analytiques définies dans un anneau circulaire concentrique. Proc. Imp. Acad. Tokyo 21 (1945), 9496.
 5) $D_{q}+\Gamma_{q}$ denote the domain obtained from D_{q} by deleting from its boundary the slit Γ_{q} except the peripheral end-point.
