36. Notes on Fourier Analysis (XXXIX).

 Convergence and Summability of Orthogonal Series.By Gen-ichirô Sunouchi and Shigeki Yano.
Mathematical Institute, Tôhoku University.
(Comm. by K. Kunugi, m.J.A., July 12, 1950.)
§1. Let $\left\{\varphi_{r_{n}}(x)\right\}$ be any normalized orthogonal system (N.O.S) in (a, b), that is

$$
\int_{a}^{b} \varphi_{i}(x) \varphi_{j}(x)= \begin{cases}0, & (i \neq j) \tag{1}\\ 1, & (i=j)\end{cases}
$$

Rademacher and Menchoff proved that if

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n n}^{2} \log ^{2} n<\infty \tag{2}
\end{equation*}
$$

then the orthogonal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n} \varphi_{n}(x) \tag{3}
\end{equation*}
$$

converges almost everywere in (a, b). Generalizing this, Kantorovitch ${ }^{1)}$ proved the following maximal theorem:

Theorem 1. Let $\left\{\boldsymbol{q}_{n}(x)\right\}$ be N.O.S. in (a, b), then

$$
\begin{equation*}
\int_{a}^{b} \sup _{n} \left\lvert\, \sum_{k=1}^{n} \frac{a_{k}}{\log (k+1)}{\varphi_{k}(x)}^{2} d x \leqq A \sum_{n=1}^{\infty} a_{i n}^{3}\right. \tag{4}
\end{equation*}
$$

where A is an absolute constant.
From the theorem of Rademacher-Menchoff, it is evident that

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{2 n}^{2} n^{2 \alpha}<\infty \quad(\alpha>0) \tag{5}
\end{equation*}
$$

implies the almost everywhere convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n 2} \varphi_{n}(x) \tag{6}
\end{equation*}
$$

More generally if (5) holds, then (6) is ($C,-\alpha+\delta$), $\delta>0$, summable almost everwhere. (See Kaczmrz ${ }^{2}$, Zygmund ${ }^{3}$). Recently Cheng ${ }^{4}$

1) Kantorovitch, L. : Some theorems on the almost everywhere convergence, Comptes Rendus Acad. Sci. URSS., 14 (1937), 537-540.
2) Kaczmarz, S. : Uber die Konvergenz der Reihen von Orthogonalfunktionen, Math. Zeitschr., 23 (1925).
3) Zygmund, A.: Une remarque sur un théorème de M. Kaczmarz, Math. Zeitschr., 25 (1926), 297-298.
4) Cheng. M. T.: Cesàro summability of orthogonal series, Duke Math. Journ., 14 (1947), 401-404.
proved that if $\left\{\varphi_{r x}(x)\right\}$ is uniformly bounded and

$$
\int_{a}^{\prime \prime} \varphi_{n}(x) d x=0 \quad(n=1,2, \ldots)
$$

then (5) implies the ($C,-\alpha$) summability of (6), where $1 / 2<\alpha<1$.
The restriction $1 / 2<a<1$ seems curious. Concerning this point we shall prove the following theorem.

Theorem 2. Let $\left\{\varphi_{r 2}(x)\right\}$ be N.O.S. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} n^{2 \alpha}<\infty \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n} \phi_{n}(x) \tag{6}
\end{equation*}
$$

is $(C,-a)$ summable almost everywhere, where $0<a<1$.
This is generalized as follows.
Theorem 3. Let $\left\{\phi_{x}(x)\right\}$ be N.O.S. If we denote by $N_{n}^{(\alpha)}(x)$ the n-th $(C,-\alpha)$-mean of the series

$$
\sum_{n=1}^{\infty} a_{1_{2}} n^{-\alpha} \boldsymbol{\varphi}_{n}(x)
$$

then

$$
\int_{a}^{b} \sup _{n}\left|N_{n}^{(\alpha)}(x)\right|^{2} d x \leqq A_{a} \sum_{n=1}^{\infty} a_{n}^{2}
$$

where A_{α} is an absolute constant depending only on α.
The method of proof of Theorem 3 gives incidentally a new proof of Theorem 1. We prove Theorem 1 in $\S 2$ and Theorem 3 in § 3 .
§2. In this paragraph, we denote by $t_{n}(x)$, and $\tau_{n}^{(\beta)}(x)(\beta>-1)$ the n-th partial sum and the (C, β)-mean of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{\log (n+1)}} \varphi_{n}(x) \tag{7}
\end{equation*}
$$

respectively, and put $\tau_{n 2}^{(1)}(x)=\tau_{n}(x)$. The partial sum and (C, β) mean of

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n 2} \varphi_{n}(x) \tag{6}
\end{equation*}
$$

are denoted by $s_{n}(x)$ and $\sigma_{x}^{(\beta)}(x)$, respectively, and put

$$
\sigma_{n}^{(1)}(x)=\sigma_{n}(x)
$$

Then we have the following lemmas.
Lemma 1. Let $\alpha \geqq 0$, and $\sum_{n=1}^{\infty} a_{n i}^{2}<\infty$, then

$$
\begin{equation*}
\int_{a}^{1} \sup _{n}\left[\sum_{k=1}^{n}\left|\tau_{i}^{(\alpha)}(x)\right|^{2 /} / n\right] d x \leqq A_{a} \sum_{n=1}^{\infty} a_{n}^{2} \tag{8}
\end{equation*}
$$

Proof. It is sufficient to prove the case $\alpha=0$. By RieszFischer's theorem, $t_{n}(x)=\tau_{n}^{(0)}(x)$ converges in mean to a function $F(x) \in L^{2}(a, b)$. Then

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n} \int_{i}^{l}\left|t_{n n}(x)-F(x)\right|^{2} d x=\sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=n+1}^{\infty} \frac{a_{k}^{2}}{\log (k+1)} \tag{9}\\
=\sum_{k=1}^{\infty} \frac{a_{k}^{n}}{\log (k+1)} \sum_{n=1}^{k} \frac{1}{n} \leqq A \sum_{n=1}^{\infty} a_{n}^{2} .
\end{gather*}
$$

On the other hand we have

$$
\begin{align*}
& \frac{1}{n} \sum_{k=1}^{n}\left|t_{k}(x)\right|^{2} \leqq \frac{2}{n} \sum_{k=1}^{n}\left|t_{k}(x)-F(x)\right|^{2}+2|F(x)| \tag{10}\\
& \quad \leqq \sum_{k=1}^{\infty}\left|t_{k}(x)-F(x)\right|^{2}+2|F(x)|^{2}
\end{align*}
$$

and then

$$
\begin{gathered}
\int_{a}^{b} \sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left|t_{k}(x)\right|^{2} d x \leqq A \int_{a}^{b} \sum_{n=1}^{\infty} \frac{\left|t_{n}(x)^{2}-F(x)\right|^{2}}{n} d x+A \int_{a}^{b}|F(x)|^{2} d x \\
\leqq A \sum_{n=1}^{\infty} a_{n}^{2}+A \sum_{n=1}^{\infty} a_{n}^{2} / \log (n+1) \leqq 2 A \sum_{n=1}^{\infty} a_{n n}^{2}
\end{gathered}
$$

by (9), which is the required.
Lemma 2. Let $0<a<1$. We have

$$
\begin{equation*}
\int_{a}^{b} \sum_{k=1}^{\infty} \frac{\left|\sigma_{k}^{\left(-\frac{\alpha+1}{2}\right)}(x)-\sigma_{k}^{\left(-\frac{\alpha+1}{2}+1\right)}(x)\right|^{2}}{k^{\alpha+1}} d x \leqq A_{\alpha} \sum_{k=1}^{\infty} a_{k}^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} \sum_{k=1}^{\infty}\left|\sigma_{k}\left(-\frac{1}{2}\right)(x)-\sigma_{k}^{\left(\frac{1}{2}\right)}(x)\right|^{2} d x \leqq A \sum_{k=1}^{\infty} a_{k}^{2} \log (k+1) \tag{12}
\end{equation*}
$$

provided that the right-hand side series of (11) and (12) converge.
Proof. Since

$$
\sigma_{n}^{(\beta-1)}(x)-\sigma_{n}^{(\beta)}(x)=\frac{1}{\beta A_{n}^{(\beta)}} \sum_{k=1}^{n} k A_{n-k}^{(\beta-1)} a_{k} \varphi_{k}(x),
$$

we have

$$
\begin{align*}
& \int_{a}^{b}\left|\sigma_{n}^{\left(-\frac{1+\alpha}{2}\right)}(x)-\sigma_{n}{ }^{\left(-\frac{1+\alpha}{2}+1\right)}(x)\right|^{2} d x \tag{13}\\
& ={ }^{1} \beta^{2}\left[A_{a}^{\left(-\frac{1+a}{2}+1\right)}\right]^{2} \sum_{k=1}^{n} k^{2}\left[A_{a-k}\left(-\frac{1+\alpha}{2}\right)\right]^{2} a_{k}^{2} .
\end{align*}
$$

Consequently,

$$
\begin{aligned}
& \left.\sum_{n=1}^{\infty} \int_{a}^{b} \frac{\left\lvert\, \sigma_{n}\left(-\frac{1+\alpha}{2}\right)(x)-\sigma_{n}\left(-\frac{1+\alpha}{幺}+1\right)\right.}{n^{\alpha+1}}(x)\right|^{2} d x \leqq A_{a} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \frac{a_{k}^{2}}{(n-k+1)^{\alpha+1}} \\
& \quad \leqq A_{a} \sum_{k=1}^{\infty} k^{2} a_{k}^{2} \sum_{n=k+1}^{\infty} \frac{1}{n^{2}(n-k)^{\alpha+1}} \\
& \quad \leqq A_{a}\left\{\sum_{k=1}^{\infty} k^{2} a_{k=}^{2} \sum_{n=k+1}^{2 k} \frac{1}{n^{2}(n-k)^{\alpha+1}}+\sum_{k=1}^{\infty} k^{2} a_{k}^{2} \sum_{n=2 k+1}^{\infty} \frac{1}{n^{2}(n-k)^{\alpha+1}}\right\} \\
& \quad \leqq A_{\alpha}\left\{\sum_{k=1}^{\infty} a_{k}^{2} \sum_{n=k+1}^{2 k} \frac{1}{(n-k)^{\alpha+1}}+\sum_{k=1}^{\infty} a_{k}^{2} \sum_{n=2 k+1}^{\infty} \frac{1}{n^{3}}\right\}
\end{aligned}
$$

If $\alpha>0$, then

$$
\begin{equation*}
\left.\left.\sum_{n=1}^{\infty} \int_{\alpha}^{b} \frac{\left\lvert\, \sigma_{n}\left(-\frac{1+\alpha}{3}\right)\right.}{(x)-\sigma_{n}\left(-\frac{1+\alpha}{2}+1\right)}(x)\right|^{2}\right) d x \leq A_{\alpha} \sum_{n=1}^{\infty} a_{n}^{\text {s. }} \tag{14}
\end{equation*}
$$

and if $a=0$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{n}^{\prime \prime} \frac{\left|\sigma_{n}^{\left(-\frac{1}{2}\right)}(x)-\sigma_{n}^{\left(\frac{1}{2}\right)}(x)\right|^{2}}{n} d x \leqq A \sum_{n=1}^{\infty} a_{n 2}^{2} \log (n+1) \tag{15}
\end{equation*}
$$

Lemma 3. If $\sum_{n=1}^{\infty} a_{i n}^{2}<\infty$, then

$$
\begin{equation*}
\int_{\Omega}^{b} \sup _{n} \frac{\left|t_{n}(x)\right|^{2}}{\log (n+1)} d x \leqq A \sum_{n=1}^{\infty} a_{n} \tag{16}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
t_{2 x}(x)=\sum_{n=1}^{n} \tau_{k}\left(-\frac{1}{2}\right)(x) A_{t}\left(-\frac{1}{2}\right) A_{n-k}^{\left(-\frac{1}{2}\right)} \tag{17}
\end{equation*}
$$

we have

$$
\text { (18) } \quad\left|t_{2 x}(x)\right|^{2} \leqq\left\{\sum_{k=1}^{n}\left|\tau_{k}\left(-\frac{1}{2}\right)(x)\right|^{2}\right\}\left\{\sum_{k=1}^{n}\left|A_{k}^{\left(-\frac{1}{2}\right)} A_{n-k}^{\left(-\frac{1}{2}\right)}\right|^{2}\right\}
$$

$$
\leqq A \sum_{k=1}^{n}\left[\tau_{k}{ }^{\left(-\frac{1}{2}\right)}(x)\right]^{2} \sum_{k=1}^{n} \frac{1}{k(n-k+1)} \leqq \frac{A \log (n+1)}{n} \sum_{k=1}^{n}\left[\tau_{k}{ }^{\left(-\frac{1}{2}\right)}(x)\right]^{2}
$$

Then, since

$$
\begin{align*}
& \left|t_{n}(x)\right|^{2} / \log (n+1) \leqq \frac{A}{n} \sum_{k=1}^{n}\left[\tau_{n}\left(-\frac{1}{2}\right)(x)\right]^{2} \tag{19}\\
& \quad \leqq A \sum_{n=1}^{n}\left|\tau_{k}{ }^{\left(-\frac{1}{2}\right)}(x)-\tau_{k}{ }^{\left(\frac{1}{2}\right)}(x)\right|^{2} k^{-1}+A \sum_{n=1}^{n}\left|\tau_{k}\left(\frac{1}{2}\right)(x)\right|^{2} / n
\end{align*}
$$

[Vol. 26,
we have

$$
\begin{align*}
& \int_{a}^{b} \sup _{n} \frac{\left|t_{n 2}(x)\right|^{2}}{\log (n+1)} d x \leqq A \int_{a}^{b} \sum_{n=1}^{\infty} \frac{\left|\tau^{\left(-\frac{1}{2}\right)}(x)-\tau_{n n}^{\left(\frac{1}{2}\right)}(x)\right|^{2}}{n} d x \tag{20}\\
& \quad+A \int_{a}^{1} \sup _{n} \frac{\sum_{k=1}^{n}\left|\tau_{k}^{\left(\frac{1}{2}\right)}(x)\right|^{2}}{n} d x .
\end{align*}
$$

By Lemma 1 and 2, we get this lemma.
Lemma 4. If $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$, then we have

$$
\begin{equation*}
\int_{n}^{\prime \prime} \sup _{n}\left|\tau_{n}(x)\right|^{2} d x \leqq A \sum_{n=1}^{\infty} a_{n}^{2} \tag{21}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \int_{a}^{b} \sup _{n}\left|\tau_{n}(x)\right|^{2} d x \leqq \int_{a}^{0} \sup _{n}\left(\frac{\sum_{k=1}^{n}\left|t_{k}(x)\right|}{n}\right)^{2} d x \\
& \quad \leqq A \int_{a}^{b} \sup _{n}\left(\frac{\sum_{k=1}\left|t_{k}(x)\right|^{2}}{n}\right) d x \leqq A \sum_{n=1}^{\infty} a_{n}^{2}
\end{aligned}
$$

by Lemma 1.
Proof of Theorem 1. Put

$$
\lambda_{k}=1 / \sqrt{\log (k+1)}
$$

then we have

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{a_{k}}{\log (k+1)} \boldsymbol{q}_{k}(x)=\sum_{k=1}^{n} \lambda_{k} \frac{a_{k}}{\sqrt{\log (k+1)} \boldsymbol{\phi}_{k}(x)} \tag{23}\\
& \quad=\sum_{k=1}^{n-1} t_{k}(x) \Delta \lambda_{k}+\lambda_{n} t_{n}(x) \\
& \quad=\sum_{k=1}^{n-2}(k+1) \tau_{k}(x) \Delta^{2} \lambda_{k}+n \tau_{n-1}(x) \Delta \lambda_{n-1}+\lambda_{n} t_{n z}(x)
\end{align*}
$$

where $\Delta \lambda_{n 2}=\lambda_{n 2}-\lambda_{n-1}=O\left(1 / n \log ^{3 / 2}(n+1)\right)$ and $\Delta^{2} \lambda_{n 2}=O\left(1 / n^{2} \log ^{3 / 2}(n+1)\right)$.
Thus we have

$$
\begin{aligned}
& \sup _{n}\left|\sum_{k=1}^{n} \frac{a_{k}}{\log (k+1)} \varphi_{k}(x)\right|^{2} \leqq A \sup _{n}\left|\sum_{k=1}^{n}(k+1) \tau_{k}(x) d^{2} \lambda_{k}\right|^{2} \\
& +A \sup _{n}\left|\tau_{n}(x)\right|^{2} / \log ^{3 / 2}(n+1) \\
& \quad+A \sup _{n}\left|t_{n}(x)\right|^{2} / \log (n+1) \\
& \leqq A \sup _{n}\left|\tau_{n}(x)\right|^{2}+A \sup _{n}\left|t_{n}(x)\right|^{2} / \log (n+1)
\end{aligned}
$$

and then we get the theorem by Lemma 4 and 3.

S3. Lemma 5. Let $\sum_{n=1}^{\infty} a_{i n}^{2}<\infty$, then

$$
\int_{\alpha}^{1} \sup _{n}\left|\frac{\sigma_{n}^{(-\alpha)}(x)}{n^{-\alpha}}\right|^{2} d x \leqq A_{\alpha} \sum_{n=1}^{\infty} a_{n}^{2}
$$

where $0<\alpha<1$.
Proof. If we denote by $s_{n}^{(-\alpha)}(x)$ the n-th $(C,-\alpha)$ sum of the series $\sum_{n=1}^{\infty} a_{n i} \varphi_{n}(x)$, then we have

$$
\begin{aligned}
\left|s_{n}^{(1-\alpha)}(x)\right|^{2} & =\left|\sum_{k=1}^{n} \sigma_{k}^{(-\beta)}(x) A_{k}^{(-\beta)} A_{n-k}^{(-\alpha+\beta-1)}\right|^{2} \\
& \leqq \sum_{k=1}^{n}\left|\sigma_{k}^{(-\beta)}(x)\right|^{2} \sum_{k=1}^{n}\left[A_{k}^{(-\beta)]^{2}}\left[A_{n-k}^{(-\alpha+\beta-1)}\right]^{2}\right. \\
& \leqq \sum_{k=1}^{n}\left|\sigma_{k}^{(-\beta)}(x)\right|^{2} \sum_{k=1}^{n} \frac{1}{k^{2 \beta}} \frac{1}{(n-k-1)^{2(\alpha-\beta+1)}} .
\end{aligned}
$$

Now if we put $2 \beta=2(\alpha-\beta+1)$, then $\beta=(\alpha+1) / 2$. The second factor of the last expression is

$$
\sum_{k=1}^{n} \frac{1}{k^{\alpha+1}} \frac{1}{(n-k+1)^{\alpha+1}} \leqq \sum_{k=1}^{[n / 2]}+\sum_{[n / 2]+1}^{n} \leqq A_{\alpha} / n^{\alpha+1}
$$

Consequently we have

$$
\begin{align*}
& \left|s_{n}^{(-\alpha)}(x)\right|^{2} \leqq A_{a} \sum_{k=1}^{n} \left\lvert\, \sigma_{k}\left(\left.{ }^{\left(-\frac{1+\alpha}{2}\right)}(x)\right|^{2}\left(1 / n^{\alpha+1}\right)\right.\right. \tag{25}\\
& \leqq \frac{A_{\alpha}}{n^{\alpha+1}} \sum_{k=1}^{n}\left|\sigma_{k}{ }^{\left(-\frac{1+\alpha}{2}\right)}(x)-\sigma_{k b}{ }^{\left(-\frac{1+\alpha}{2}+1\right)}(x)\right|^{2}+\frac{A_{\alpha}}{n^{1+\alpha}} \sum_{k=1}^{n}\left|\sigma_{k}{ }^{\left(-\frac{1+\alpha}{2}+1\right)}(x)\right|^{2} \\
& \leqq A_{\alpha} \sum_{k=1}^{n} \frac{\left|\sigma_{k}^{\left(-\frac{1+\alpha}{2}\right)}(x)-\sigma_{k}\left(-^{1+\alpha}{ }^{2+1}\right)(x)\right|^{2}}{k^{1+\alpha}}+\frac{A_{\alpha}}{n^{\alpha+1}} \sum_{k=1}^{n}\left|\sigma_{k}\left(-\frac{+\alpha}{2}+1\right)(x)\right|^{2} .
\end{align*}
$$

Since $0<(1+\alpha) / 2<1$ and $0<-(1+\alpha) / 2+1<1$, we get Lemma 5 from Lemma 1 and 2.

Lemma 6. Let $\sum_{n=1}^{\infty} k_{n}$ be given and put $s_{n}^{(-\delta)}=\sum_{\nu=1}^{n} A_{n-\nu}^{(-\delta)} k_{\nu}$
and

$$
s_{m, n}^{(-\delta)}=\sum_{\nu=1}^{m} A_{n-\nu}^{(-\delta)} k_{\nu} \quad(m<n)
$$

then $\quad\left|s_{m, l}^{(-\delta)}\right| \leqq \max _{1 \leq \nu \leq m}\left|s_{v}^{(-\delta)}\right|$, where $\quad 0 \leqq \delta<1$.
This is well known. (See Hardy-Riesz ${ }^{\text { }}$.)
5) Hardy, G. H. and Riesz, M. : General theory of Dirichlet series, Cambridge Tract, 1915.

Lemma 7. If we put

$$
T_{n}(x)=\sum_{k=1}^{n} a_{k k} k^{-\alpha} \varphi_{k}(x)
$$

then

$$
\begin{equation*}
\int_{n}^{n} \sup _{n}\left|T_{n}(x)\right|^{2} d x \leqq A_{\alpha} \sum_{n=1}^{\infty} \alpha_{n 2}^{2} \tag{26}
\end{equation*}
$$

provided that the right-hand side series converges.
This is an easy consequence of theorem 1.
Proof of Theorem 3. Let $N_{n}^{(\alpha)}(x)$ be the n-th $(C,-\alpha)$-mean of the series

$$
\sum_{n=1}^{\infty} n^{-\alpha} a_{n} \varphi_{n}(x)
$$

then
(27)

$$
\begin{aligned}
& N_{n}^{(\alpha)}(x)=\frac{1}{A_{n}^{(-\alpha)}} \sum_{\nu=1}^{n} A_{n-\nu}^{(-\alpha)} \nu^{-\alpha} a_{\nu} \varphi_{\nu}(x) \\
= & \frac{1}{A_{n}^{(-\alpha)}}\left[\sum_{\nu=1}^{[n / 2]}+\sum_{[2 / 2]+1}^{n}\right] A_{n-\nu}^{(-\alpha)} \nu^{-\alpha} a_{\nu} \varphi_{\nu}(x)=P_{n}(x)+Q_{n}(x),
\end{aligned}
$$

say. Now,

$$
\begin{align*}
& P_{n}(x)=\frac{1}{A_{n}^{(-\alpha)}} \sum_{\nu=1}^{[2 / 2]} A_{n-\nu}^{(-\alpha)} \nu^{-a} a_{\nu} \varphi_{\nu}(x) \tag{28}
\end{align*}
$$

If we put

$$
\sup _{n}\left|T_{n}(x)\right|=T(x), \text { then }
$$

$$
\begin{equation*}
\left|P_{n}(x)\right| \leqq T(x) A_{\alpha} n^{\alpha} \sum_{\nu=1}^{[p / 2]}(n-\nu)^{-\alpha-1}+A_{\alpha} T(x) \leqq A_{\alpha} T(x) \tag{29}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
Q_{n}(x)= & \frac{1}{A_{n}^{(-\alpha)}} \sum_{\nu=[n / 2]+1}^{n} A_{n-\nu}^{(-\alpha)} \nu^{-\alpha} a_{\nu} \varphi_{\nu}(x) \\
= & \frac{1}{A_{n}^{(-\alpha)}}\left\{\sum_{\nu=[n / / 2]+1}^{n-1} J^{-\alpha} \sum_{\mu=1}^{\nu} A_{n-\mu}^{(-\alpha)} a_{\mu} \varphi_{\mu}(x)+n^{-\alpha} \sum_{\nu=[n / 2]}^{n} A_{n-\nu}^{(-x)} a_{\nu} \varphi_{\nu}(x)\right. \\
& \left.\quad-[n / 2]^{-\alpha} \sum_{\nu=1}^{[n / 2]} A_{n-\nu}^{(-\alpha)} a_{\nu} \varphi_{\nu}(x)\right\}
\end{aligned}
$$

Let us put $M(x)=\sup _{n}\left|\sum_{\nu=1}^{n} A_{n-\nu}^{(-\alpha)} \nu^{-\nu} a_{\nu} \varphi_{\nu}(x)\right|$, then from Lemma 6, we have

$$
\begin{equation*}
\left|Q_{n}(x)\right| \leqq A_{\alpha} M(x) \tag{30}
\end{equation*}
$$

Thus we get the theorem from (27), (29), (30), Lemma 5 and 7.
Theorem 2 is an easy consequence of this theorem.

