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17. An Alternative Proof of Liber’s Theorem.

By Shigeo SASAKI.

Mathematical Institute, Faculty of Science, TShoku University.

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1951.)

1. Introduction.

Ia Mathematical Review 11 (1950), Prof. M.S. Knebelmann
communicated the following results o Liber (Doklady Akad. Nauk
SSSR (N.S), 66 (1949)) concerning the structure of affinely connected
and Riemannian spaces with one-parametric holonomy groups.

Theorem A. Suppose that the holonomy group H of a given
a2nely connected space A. be a dne parametric group. If we
denote the symbol of the i:finitesimal transformation of H by

"i(a" const.) then the rank of the matrix IIa is atxf
most 2.

Theorem B. Suppose that the holonomy group H of a given
Riemannian space V be a one parametric group. Then V, admits
(n--2) parallel vector fields which are independent each other. Ac-
cordingly, V,, is the product space of a two dimensiona Riemannian
space and an (n--2) dimensional uclidean space.

I shall give here alternative proofs of Liber’s theorems.
Although I can aot see his paper, it is certain that my proof is
quite different 2rom his original proof. Perhaps my proof will be
more geometrical than his proof.

2. Riemannian spaces.

We shall first state Cartan’s Lemma. Suppose that the
holonomy group of a nonholonomic space E with the fundamental
group G be g. Then we caa choose frames at each point of E so
hat the connexion of the space in consideration is analytically
the same as those of a space with the undamental group g.

When we are going to apply this Lemma to Riemannian and
affinely connected spaces, we must not, that the word "holonomy
group *’ is used in different senses in introduction and in Car-
an’s Lemma. The holonomy group in introdaction is the so
called "homogeneous holonomy group" that is the group o
linear homogeneous transformations belonging to the holonomy
group in ordinary sease.
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Now, suppose that the holoaomy group of a given Riemannian
space V, be a one parametric continuous group H (of rotations).
Then oa account of Cartan’s Lemma, we can choose frames at
each point of V so that the connexion of V is analytically the
same as that of a space with the fundamental group H. We shall
assume that orthogonal frames at each point of V are so chosen.
if we denote by

1 ) Xf aux, au = --a;,

(where a are constants) the generator of H aad the equations.
of definition of the connexion of V by

then we obtain the following relation-

( 2 ) v av ,o

( is a Pfaffian which appears as the proportionality factor).
Putting the last equation ia

we get

( 3 ) T2, -a;,
where dashes mean the exterior derivatioa of Pfaffians (differential
forms of rank 1). Hence if we put

.( 4 .gv Av [%],

wet get

5 Ast a,s B,

where Bz, are components o a quaniy defined by

On the other hand, Aw’s satisfy the following relation:

( 6 Aw.
( 7 ) A:;. +A+A O.

If we use (5), (6)and (7), we can easily see that the following
relations hold good
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(9)

(9) shows that the bivector a is simple. Hence if we perform
suitable orthogonal transformations for orthogonal frames in con-
sderation, we can give the generator Xf the following canonical
expression"

Xf x f x: fx x
Accordingly, the holonomy groap H fixes (n-2) mutually in-
dependent directions. Consequently, we know by [2], that the
following theorem holds good:

Theorem 1. In order that a Riemannian space ha. one para-
metric holonomy group, it is necessary and sucient that there exists
a coordinate system such that the line element of the space in con-
sideration reduces to the following canonica form

ds" = da + (du:) + (du): + + (du’),
where we have put

d g,,(u")dudu (a, b, c 1, 2).

’Theorem 1 is essentially same as Theorem B in 1.

3. Affinely connected spaces.

Suppose that the holonomy group of a given affinely connected
space A without torsion be a one parametric continuous group H
(of central affine transformations). Then on account of Cartan’s
Lemma, we can choose frames at each point of A so that the
connexion of A, is analytically the same as that of a space with
the fundamental group H. We shall assume that cartesian frames
at each poit of A are so chosen. If we denote by

xf ai. .

(where a are constants) the generator of H and the equations of
definition of the connexion of A,,. by

de = edP e,

then we obtain the following relation"

Putting the last equation in
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wet get

(12) Y2 --a’.
Hence if we put

(13) .Q A[%],

we see that A has the following form"

(14) AJ, aj B, (B,

However as A}’s satisfy the relation

A+ A.,+ A: 0,

we get finally the following relation"

(15)

Now, let us make some convention. In the first place we
shall use two sets of indices i,j, k, 1 and a, /, /, , both take
values 1, 2,..., n. But for the latter, we assume that they take
some fixed values in each proposition. In the second place we
shall deote the equation (15) or j--., k =/, 1----/ by E.... In

%he third place, when a set of r(r--1) equations B(,,---O (a,b--1,2... ,r)
2

hold simultaneously, we shall say that "the assumption A:.. is
satisfied or holds good," and when at least oe of B,, does not
vanish we shall say that "A: does not satisfied" o ", holds
good." Finally, let us consider a as homogeneous coordinates of
a point a in projective (n--l) space

Then we can easily obtain from (15) the following
Lemma L. If .., holds good the rank of the (3, n) matrix

II aaal[ is at most 2. In other words, the three points a, a, a are
colliuear or some of them does not represent an actual point (for
example a’ 0). On the contrary, if A.o is satisfied, we can
conclude nothing about its rank.

The remaining part of this paragraph is devoted to the proof
Of Theorem A. If the rank of the (n, n) matrix l] atl <:: 1, there
remains nothiag to prove. Hence we shall assume hereafter that
the rank of llaJll is at least 2, that is, there exist at least two
distinct actual points among a, a. in P_. We can assume
without aay loss of generality that a and a: are distiact actual
points.

First, if we assume that ,:. holds, then we can easily see,
in virtue of E:. and our hypothesis oa the point a, a.:, that

B:== 0. Hence a--0 or the point
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and a. An analogous result follows also from the assumption
o.. Accordingly, if ,:: and :4 hold good, then the rank of
the (4, n) matrix llaaaail is equal to 2.

Now, it does not happen that A,.o and .o are satisfied. For,
these assumptions lead us, on account of E.o immediately to a
contradiction. Analogous fact holds good also for .,.o: and A..

Lastly, if A:. and A:. hold simultaneously, then B 0.
For if we assume B.=]= 0, rhea, by virtue of E,. and E, we
meet a contradiction. Accordingly, we get the following

Lemma L. If the assumption .. is satisfied, then the rank
of the matrix ]la,aaall is equal to 2. On the contrary, if A.
is satisfied we can conclude nothing about its rank.

Noting the analogy between Lemmas L and L we want to
prove Theorem A by mathematical induction. Let us first assume
that Lemmas L, L,... and L_. are true and prove L,_.. We
can first see that the following proposition is true"

(i) .71.. holds good and the rank of the matrix [[ a a...a,._[l
is equal to 2, or

(i) A: holds good, and we can conclude nothing about
the rank of the matrix.

In the same way, we see
(ii) .,. holds good and the rank of the matrix lianaS...

,._o. a,. ]I is equal to 2, or
(ii) A. _o.,. holds good and we can conclude nothing about

the rank of the matrix.
Analogous to the proof of Lemma L, we can easily show.

that only combinations (i), (ii) and (i), (ii) are possible and they
lead to the

Lemma L,._o.. If .o...., holds good then the rank of the matrix
i[ aa...a,li is equal to 2. On the contrary, if A holds good,
we can conclude nothing, about its rank.

On the other hand, the assumption A...., is equivalent that
the affinely connected space in consideration is flat. Hence there
remains only the case where the rank 1] a 1] is equal to 2. Con-
sequently the proof of Theorem A is finished.

4.
Let us denote the characteristic roots of the equation

by p, p,..., p,. We assume that equal roots occupy consecutive
position in this arrangement of roots. Then, performing a suitable
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linear coordinate transformation, we can reduce the matrix
to the following canonical form"

e 0 0

-where e is 0 or + 1 and when e 1, g p+, (See [3]). However
as the rank of the matrix is at most 2, only the ollowing canon-
ical orms are possible"

(I) The case where all e, vanish. In this case the canonical
form reduces to one of the type (Io) or (I) o the next table of
matrices.

(II) The case where just one of e does not vanish. In this
case the canonical orm reduces to one of the type (IIo), (II,) or
(II).

(III) The case where just two of e does not vanish. In this
case the canonical from reduces to the type (III).

(II0)

Table of Matrices.

()

pt 0 0

0 p

0 0

o 0
0 0

0 0

(II)

p 1 0

0 p

0 0

(IL.)

0 1 0

0 0 0 0

0 0 p (III)

0 1 0

0 0 1 0

0 0 0
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Consequently, the generators of the corresponding holonomy groups
are given as follows"

(Io) ’ y
(I) wf+a: f (- const. 4= 0)

X X

(Iio) x f
i)X

(II,)

(IL) x f + a x f

(III) x f + x fx x

Theorem 2. If the holonomy group of any anely connected space
A, without torsion is one parametric group, then A, admits at least
(n--2) mutually independent parallel vector fields.

(The converse is not true in general).
Proof. We can easily see from the canonical forms of the

matrix lla,il that the connexion of the space in consideration
is given by one of the following equations"

dP e
(I,,) de de O, de, O,

(I) de ol e de o. e.,. de.; O, ..., de O,

(Iio) de O, de2 de:; 0 de.. O,coo.el

(II,) de o e, ,. de.,. e + o. e.., de O, ..., de = O,

(II,) de, O, de e de. o e. de O, ..., deo, O,

de.,. O, de, O.(III) de, O, de o e de o. e

Hence, we can easily conclude that the connexions of the type (I),
(II) and (III)admit (n--l) and (n--2) mutually independent parallel
vector fields respectively. Q.E.D.

From the last theorem we can immediately obtain Theorem B
as its corollary. For the one parametric group H of the type (III)
there exists non-singular quadratic forms which are invariant under
H. Hence the A,, may be regarded as a Riemannian space. (Cf.
M. Abe [4]).
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We can also derive the canonical forms of parameters of affine
connexions in consideration, but we omit them, for they are some-
what complicated for types (IL), (II) and (III).
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