17. An Alternative Proof of Liber's Theorem.

By Shigeo Sasaki.
Mathematical Institute, Faculty of Science, Tôhoku University. (Comm. by K. Kunugi, m.J.A., Feb. 12, 1951.)

§ 1. Introduction.

In Mathematical Review 11 (1950), Prof. M. S. Knebelmann communicated the following results of Liber (Doklady Akad. Nauk SSSR (N.S), 66 (1949)) concerning the structure of affinely connected and Riemannian spaces with one-parametric holonomy groups.

Theorem A. Suppose that the holonomy group H of a given affinely connected space A_{n} be a one parametric group. If we denote the symbol of the infinitesimal transformation of H by $X f=a_{j}^{i} x^{j} \frac{\partial f}{\partial x^{i}}\left(\alpha_{j}^{i}:\right.$ const.), then the rank of the matrix $\left\|a_{j}^{i}\right\|$ is at most 2.

Theorem B. Suppose that the holonomy group H of a given Riemannian space V_{n} be a one parametric group. Then V_{n} admits ($n-2$) parallel vector fields which are independent each other. Accordingly, V_{n} is the product space of a two dimensional Riemannian space and an ($n-2$) dimensional Euclidean space.

I shall give here alternative proofs of Liber's theorems. Although I can not see his paper, it is certain that my proof is quite different from his original proof. Perhaps my proof will be more geometrical than his proof.

§2. Riemannian spaces.

We shall first state Cartan's Lemma. Suppose that the holonomy group of a nonholonomic space E with the fundamental group G be g. Then we can choose frames at each point of E so that the connexion of the space in consideration is analytically the same as those of a space with the fundamental group g.

When we are going to apply this Lemma to Riemannian and affinely connected spaces, we must note that the word "holonomy group" is used in different senses in introduction and in Cartan's Lemma. The holonomy group in introduction is the so called "homogeneous holonomy group" that is the group of linear homogeneous transformations belonging to the holonomy group in ordinary sense.

Now, suppose that the holonomy group of a given Riemannian space $V_{a 2}$ be a one parametric continuous group H (of rotations). Then on account of Cartan's Lemma, we can choose frames at each point of V_{n} so that the connexion of V_{n} is analytically the same as that of a space with the fundamental group H. We shall assume that orthogonal frames at each point of V_{n} are so chosen. If we denote by

$$
\begin{equation*}
X f=a_{i j} x^{i} \frac{\partial f}{\partial x^{j}}, \quad a_{i j}=-a_{j i} \tag{1}
\end{equation*}
$$

(where $\alpha_{i j}$ are constants) the generator of H and the equations of definition of the connexion of V_{x} by

$$
d P=\omega^{i} e_{i}, \quad d e_{i}=\omega_{i j} e_{j}
$$

then we obtain the following relation:

$$
\begin{equation*}
\omega_{i j}=\alpha_{i j} \omega, \tag{2}
\end{equation*}
$$

(ω is a Pfaffian which appears as the proportionality factor). Putting the last equation in

$$
\Omega_{i j}=-\omega_{i j}^{\prime}+\left[\omega_{i k} \omega_{j k}\right],
$$

we get

$$
\begin{equation*}
\Omega_{i j}=-a_{i j} \omega^{\prime} \tag{3}
\end{equation*}
$$

where dashes mean the exterior derivation of Pfaffians (differential forms of rank 1). Hence if we put

$$
\begin{equation*}
\Omega_{i j}=A_{i j k l}\left[\omega^{k} \omega^{l}\right] \tag{4}
\end{equation*}
$$

wet get

$$
\begin{equation*}
A_{i j k l}=a_{i j} B_{k l} \tag{5}
\end{equation*}
$$

where $B_{k l}$ are components of a quantity defined by

$$
\omega^{\prime}=-B_{k l}\left[\omega^{l} \omega^{l}\right] .
$$

On the other hand, $A_{i j k l}$'s satisfy the following relation:

$$
\begin{equation*}
A_{i j k l}=A_{k l i j} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
A_{i j k l}+A_{i k l j}+A_{i j j k}=0 \tag{7}
\end{equation*}
$$

If we use (5), (6) and (7), we can easily see that the following relations hold good:

$$
\begin{equation*}
A_{i j k l}=a_{i j} a_{k l} B \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
a_{i j} a_{k l}+a_{i k} a_{l j}+a_{i l} a_{j l}=0 \tag{9}
\end{equation*}
$$

(9) shows that the bivector $a_{i j}$ is simple. Hence if we perform suitable orthogonal transformations for orthogonal frames in consideration, we can give the generator $X f$ the following canonical expression:

$$
X f=x^{1} \frac{\partial f}{\partial x^{2}}-x \frac{\partial f}{\partial x^{1}}
$$

Accordingly, the holonomy group H fixes ($n-2$) mutually independent directions. Consequently, we know by [2], that the following theorem holds good:

Theorem 1. In order that a Riemannian space has one parametric holonomy group, it is necessary and sufficient that there exists a coordinate system such that the line element of the space in consideration reduces to the following canonical form:

$$
d s^{2}=d \sigma^{2}+\left(d u^{3}\right)^{2}+\left(d u^{4}\right)^{2}+\ldots+\left(d u^{2}\right)^{2}
$$

where we have put

$$
d \sigma^{2}=g_{a b}\left(u^{c}\right) d u^{a} d u^{b} \quad(a, b, c=1,2)
$$

'Theorem 1 is essentially same as Theorem B in $\S 1$.

§ 3. Affinely connected spaces.

Suppose that the holonomy group of a given affinely connected space $A_{n 2}$ without torsion be a one parametric continuous group H (of central affine transformations). Then on account of Cartan's Lemma, we can choose frames at each point of A_{n} so that the connexion of A_{2} is analytically the same as that of a space with the fundamental group H. We shall assume that cartesian frames at each point of A_{2} are so chosen. If we denote by

$$
\begin{equation*}
X f=a_{j}^{i} \cdot x^{j} \frac{\partial f}{\partial x^{i}} \tag{10}
\end{equation*}
$$

(where a_{j}^{i} are constants) the generator of H and the equations of definition of the connexion of A_{2} by

$$
d P=\omega^{i} e_{i}, \quad d e_{j}=\omega_{j}^{i} e_{i}
$$

then we obtain the following relation:

$$
\begin{equation*}
\omega_{j}^{i}=a_{j}^{i} \omega . \tag{11}
\end{equation*}
$$

Putting the last equation in

$$
\left.\Omega_{j}^{i}=-\left(\omega_{j}^{i}\right)\right)^{\prime}+\left[\omega_{j}^{k} \omega_{k}^{2}\right]
$$

wet get

$$
\begin{equation*}
\Omega_{j}^{i}=-a_{j}^{i} \omega^{\prime} . \tag{12}
\end{equation*}
$$

Hence if we put

$$
\begin{equation*}
\Omega_{j}^{i}=A_{j k l}^{i}\left[\omega^{b} \omega^{l}\right], \tag{13}
\end{equation*}
$$

we see that $A_{j k l}^{i}$ has the following form:

$$
\begin{equation*}
A_{j k l}^{i}=a_{j}^{2} B_{k l}, \quad\left(B_{k l}=-B_{l k}\right) . \tag{14}
\end{equation*}
$$

However as $A_{j k l}^{i}$'s satisfy the relation

$$
A_{j k l}^{i}+A_{k l j}^{i}+A_{l j k}^{i}=0
$$

we get finally the following relation :

$$
\begin{equation*}
a_{j}^{i} B_{k l}+a_{k}^{i} B_{l j}+a_{l}^{i} B_{j k}=0 \tag{15}
\end{equation*}
$$

Now, let us make some convention. In the first place we shall use two sets of indices i, j, k, l and $\alpha, \beta, \gamma, \delta$, both take values $1,2, \ldots, n$. But for the latter, we assume that they take some fixed values in each proposition. In the second place we shall denote the equation (15) for $j=\alpha, k=\beta, l=\gamma$ by $E_{\alpha \beta,}$. In the third place, when a set of $\frac{r(r-1)}{2}$ equations $B_{a,}=0(a, b=1,2 \ldots, r)$ hold simultaneously, we shall say that "the assumption $A_{12 . . r}$ is satisfied or holds good," and when at least one of $B_{a b}$ does not vanish we shall say that " $A_{12 . . . r}$ does not satisfied " or " \bar{A}_{12} holds good." Finally, let us consider a_{α}^{4} as homogeneous coordinates of a point a_{α} in projective $(n-1)$ space P_{n-1}.

Then we can easily obtain from (15) the following
Lemma L_{1}. If $\bar{A}_{19 \alpha}$ holds good the rank of the $(3, n)$ matrix $\left\|a_{1}^{i} a_{2}^{i} a_{\alpha}^{i}\right\|$ is at most 2 . In other words, the three points a_{1}, a_{2}, a_{α} are collinear or some of them does not represent an actual point (for example $a_{\alpha}^{i} \equiv 0$). On the contrary, if $A_{19 \alpha}$ is satisfied, we can conclude nothing about its rank.

The remaining part of this paragraph is devoted to the proof of Theorem A. If the rank of the (n, n) matrix $\left\|a_{j}^{i}\right\| \leqq 1$, there remains nothing to prove. Hence we shall assume hereafter that the rank of $\left\|a_{j}^{i}\right\|$ is at least 2 , that is, there exist at least two distinct actual points among $a_{1}, \ldots a_{a}$ in P_{n-1}. We can assume without any loss of generality that a_{1} and a_{2} are distinct actual points.

First, if we assume that $\bar{A}_{12,}$ holds, then we can easily see, in virtue of E_{123} and our hypothesis on the point a_{1}, a_{2}, that $B_{12} \neq 0$. Hence $a_{3}^{i} \equiv 0$ or the point a_{3} lies on the line joining a_{1}
and a_{2}. An analogous result follows also from the assumption \bar{A}_{124}. Accordingly, if $\bar{A}_{19 \%}$, and \bar{A}_{124} hold good, then the rank of the ($4, n$) matrix $\left\|a_{1}^{i} a_{2}^{i} a_{a}^{2} a_{1}^{i}\right\|$ is equal to 2.

Now, it does not happen that A_{125} and \bar{A}_{124} are satisfied. For, these assumptions lead us, on account of E_{124} immediately to a contradiction. Analogous fact holds good also for \bar{A}_{123} and A_{194}.

Lastly, if $A_{19 \%}$ and A_{194} hold simultaneously, then $B_{34}=0$. For if we assume $B_{24} \neq 0$, then, by virtue of E_{134} and E_{394}^{\prime}, we meet a contradiction. Accordingly, we get the following

Lemma L_{2}. If the assumption \bar{A}_{1234} is satisfied, then the rank of the matrix $\left\|a_{1}^{i} a_{2}^{i} a_{j}^{i} a_{4}^{i}\right\|$ is equal to 2 . On the contrary, if A_{1234} is satisfied we can conclude nothing about its rank.

Noting the analogy between Lemmas L_{1} and L_{2} we want to prove Theorem A by mathematical induction. Let us first assume that Lemmas L_{1}, L_{2}, \ldots and L_{r-s} are true and prove L_{r-2}. We can first see that the following proposition is true:
(i) $\bar{A}_{12 \ldots r-1}$ holds good and the rank of the matrix $\left\|a_{1}^{i} a_{2}^{4} \ldots a_{r-1}^{i}\right\|$ is equal to 2 , or
(i) $A_{19 \ldots,-1}$ holds grood, and we can conclude nothing about the rank of the matrix.

In the same way, we see
(ii) $\bar{A}_{12 \ldots, \ldots-2, r}$ holds good and the rank of the matrix $\| a_{i}^{2} a_{2}^{2} \ldots$ $a_{r-2}^{i} a_{r}^{i} \|$ is equal to 2 , or
(ii) ${ }^{\prime} A_{19 \ldots \ldots \sim, r}$ holds good and we can conclude nothing about the rank of the matrix.

Analogous to the proof of Lemma L_{2}, we can easily show that only combinations (i), (ii) and (i)', (ii)' are possible and they lead to the

Lemma L_{r-2}. If $\bar{A}_{19 \ldots . . r}$ holds good then the rank of the matrix $\left\|a_{1}^{i} a_{2}^{i} \ldots a_{r}^{i}\right\|$ is equal to 2 . On the contrary, if $A_{12 \ldots . r}$ holds good, we can conclude nothing about its rank.

On the other hand, the assumption $A_{12 \ldots, \ldots}$ is equivalent that the affinely connected space in consideration is flat. Hence there remains only the case where the rank $\left\|a_{j}^{i}\right\|$ is equal to 2 . Consequently the proof of Theorem A is finished.

$$
\S 4
$$

Let us denote the characteristic roots of the equation

$$
\left|a_{j}^{i}-\rho \delta_{j}^{i}\right|=0
$$

by $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$. We assume that equal roots occupy consecutive position in this arrangement of roots. Then, performing a suitable
linear coordinate transformation, we can reduce the matrix $\left\|a_{j}^{i}\right\|$ to the following canonical form:

where e_{i} is 0 or +1 and when $e_{i}=1, \rho_{i}=\rho_{i+1}$ (See [3]). However as the rank of the matrix is at most 2 , only the following canonical forms are possible:
(I) The case where all e_{i} vanish. In this case the canonical form reduces to one of the type (I_{0}) or (I) of the next table of matrices.
(II) The case where just one of e_{i} does not vanish. In this case the canonical form reduces to one of the type $\left(\mathrm{II}_{0}\right),\left(\mathrm{II}_{1}\right)$ or (II_{2}).
(III) The case where just two of e_{i} does not vanish. In this case the canonical from reduces to the type (III).

Table of Matrices.

Consequently, the generators of the corresponding holonomy groups are given as follows:

$$
\begin{gather*}
x^{1} \frac{\partial f}{\partial x^{1}}, \tag{0}\\
x^{1} \frac{\partial f}{\partial x^{1}}+a x^{2} \frac{\partial f}{\partial x^{2}}, \quad(a: \text { const. } \neq 0) \tag{I}\\
x^{3} \frac{\partial f}{\partial x^{1}} \\
a\left(x^{1} \frac{\partial f}{\partial x^{1}}+x^{2} \frac{\partial f}{\partial x^{2}}\right) x^{2}+x^{2} \frac{\partial f}{\partial x^{1}}, \\
x^{2} \frac{\partial f}{\partial x^{1}}+a x^{3} \frac{\partial f}{\partial x^{2}} \\
x^{2} \frac{\partial f}{\partial x^{1}}+x^{3} \frac{\partial f}{\partial x^{2}}
\end{gather*}
$$

Theorem 2. If the holonomy group of any affinely connected space A_{n} without torsion is one parametric group, then A_{n} admits at least ($n-2$) mutually independent parallel vector fields.
(The converse is not true in general).
Proof. We can easily see from the canonical forms of the matrix $\left\|a_{j}^{i}\right\|$ that the connexion of the space in consideration is given by one of the following equations:

$$
d P=\omega^{i} e_{i}
$$

$$
\begin{array}{ll}
\left(\mathrm{I}_{0}\right) & d e_{1}=\omega_{1}^{1} e_{1}, d e_{2}=0, \ldots \ldots, d e_{22}=0, \\
(\mathrm{I}) & d e_{1}=\omega_{1}^{1} e_{1}, d e_{2}=\omega_{2}^{2} e_{2}, d e_{i}=0, \ldots, d e_{n 2}=0, \\
\left(\mathrm{II}_{0}\right) & d e_{1}=0, d e_{2}=\omega_{2}^{1} e_{1}, d e_{3}=0, \ldots \ldots, d e_{22}=0, \tag{0}\\
\left(\mathrm{II}_{1}\right) & d e_{1}=\omega_{1}^{1} e_{1}, d e_{2}=\omega_{2}^{1} e_{1}+\omega_{2}^{2} e_{2} d e_{3}=0, \ldots, d e_{23}=0, \\
\left(\mathrm{II}_{2}\right) & d e_{1}=0, d e_{2}=\omega_{2}^{1} e_{1}, d e_{3}=\omega_{3}^{3} e_{3}, d e_{4}=0, \ldots, d e_{n 2}=0, \\
(\mathrm{III}) & d e_{1}=0, d e_{2}=\omega_{2}^{1} e_{1}, d e_{3}=\omega_{3}^{\frac{2}{3}} e_{2}, d e_{3}=0, \ldots, d e_{n}=0 .
\end{array}
$$

Hence, we can easily conclude that the connexions of the type (I), (II) and (III) admit ($n-1$) and ($n-2$) mutually independent parallel vector fields respectively.
Q. E. D.

From the last theorem we can immediately obtain Theorem B as its corollary. For the one parametric group H of the type (III) there exists non-singular quadratic forms which are invariant under H. Hence the A_{n} may be regarded as a Riemannian space. (Cf. M. Abe [4]).

We can also derive the canonical forms of parameters of affine connexions in consideration, but we omit them, for they are somewhat complicated for types (II_{1}), (II_{2}) and (III).

References.

1) E. Cartan: Les groupes d'holonomie des espaces généralisé, Acta Math., 48 (1926).
2) K. Yano \& S. Sasaki: Sur la structure des espaces de Riemann dont le groupe d'holonomie fixe un plan à un nombre quelconque de dimensions. Proc. Jap. Acad. 24 (1950).
3) L. P. Eisenhart: Continuous groups of transformations.
4) A. Abe: Sur la réductibilité du groupe d'holonomie, I, II, Proc. Imp. Acad. Tokyo, 20 (1944).
