76. On Selberg's Elementary Proof of the Prime-Number Theorem.

By Tikao Tatuzawa and Kanesiroo Iseki.
(Comm. by Z. Suetuna, m.J.A., July 12, 1951.)
Small Latin characters except x denote natural numbers; p represents a prime, and x denotes a real number $\geqq 1$.
A. Selberg obtained recently an elementary proof of the prime-number theorem using the following asymptotic formula:

$$
\begin{equation*}
\vartheta(x) \log x+\sum_{p \leq x} \vartheta\left(\frac{x}{p}\right) \log p=2 x \log x+O(x) \tag{1}
\end{equation*}
$$

where

$$
\vartheta(x)=\sum_{p \leq x} \log p
$$

We shall give in this note a simple proof above for

$$
\psi(x) \log x+\sum_{n \leq x} \psi\left(\frac{x}{n}\right) 4(n)=2 x \log x+O(x)
$$

where we define

$$
\psi(x)=\sum_{n \leq x} \Lambda(n), \quad \Lambda(n)=\left\{\begin{array}{lc}
\log p & \text { for } n=p^{l} \\
O & \text { otherwise }
\end{array}\right.
$$

The formula (2) is as effective as (1) and may be used as a substitute for (1) in the proof of the prime-number theorem. (Of course we could prove directly, if we wished, the equivalence of the two formulae.)

We have clearly

$$
\begin{equation*}
\log n=\sum_{d \mid n} \Lambda(d), \tag{3}
\end{equation*}
$$

and hence, by Möbius' inversion-formula,

$$
\begin{equation*}
\Lambda(n)=\sum_{d, \imath^{2}} \mu(d) \log \frac{n}{d} . \tag{4}
\end{equation*}
$$

We find further, using (3),

$$
\begin{align*}
\sum_{n \leq x} \psi\left(\frac{x}{n}\right) & =\sum_{m n \leq x} \Lambda(m)=\sum_{n \leq x} \sum_{d \mid n} \Lambda(d) \\
& =\sum_{n \leq x} \log n=\int_{1}^{x} \log \xi d \xi+O(\log x) \\
& =x \log x-x+O(\log x) \tag{5}
\end{align*}
$$

$$
\begin{aligned}
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right] & =\sum_{m_{n} \leq x} \Lambda(n)=x \log x+O(x), \\
\sum_{n \leq x} \Lambda(x) \frac{x}{n} & =\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]+O\left(\sum_{n \leq x} \Lambda(n)\right) \\
& =x \log x+O(x)+O(\psi(x)) .
\end{aligned}
$$

If $F(x)$ and $G(x)$ are any two functions defined for $x \geqq 1$, which are connected by the relation

$$
\begin{equation*}
G(x)=\sum_{n \leq x} F\left(\frac{x}{n}\right) \log x \tag{7}
\end{equation*}
$$

then we have, noting (4),

$$
\begin{aligned}
\sum_{n \leq x} \mu(n) G\left(\frac{x}{n}\right) & =\sum_{n \leq x} \mu(n) \sum_{m \leq \frac{x}{n}} F\left(\frac{x}{m n}\right) \log \frac{x}{n} \\
& =\sum_{n \leq x} F\left(\frac{x}{n}\right) \sum_{d \backslash n} \mu(d)\left(\log \frac{x}{n}+\log \frac{n}{d}\right) \\
& =\sum_{n \leq x} F\left(\frac{x}{n}\right) \log \frac{x}{n} \sum_{d \backslash n} \mu(d)+\sum_{n \leq x} F\left(\frac{x}{n}\right) \Lambda(n) \\
& =F(x) \log x+\sum_{n \leq x} F\left(\frac{x}{n}\right) \Lambda(n),
\end{aligned}
$$

since we have

$$
\sum_{d \mid n} \mu(d)=\left\{\begin{array}{lll}
1 & \text { for } & n=1 \\
0 & \text { for } & n>1
\end{array}\right.
$$

We now put, in (7) and (8),

$$
\begin{equation*}
F(x)=\psi(x)-x+C+1 \tag{9}
\end{equation*}
$$

where C is Euler's constant. We have, using (5) and•the wellknown formula

$$
\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right)
$$

the following results:

$$
\begin{aligned}
& \sum_{n \leq x} \psi\left(\frac{x}{n}\right) \log x=x \log ^{2} x-x \log x+O\left(\log ^{2} x\right) \\
& \sum_{n \leq x} \frac{x}{n} \log x=x \log ^{2} x+C x \log x+O(\log x) \\
& \sum_{n \leq x}(C+1) \log x=(C+1) x \log x+O(\log x)
\end{aligned}
$$

and hence

$$
\begin{aligned}
G(x) & =\sum_{n \leq x}\left(\psi\left(\frac{x}{n}\right)-\frac{x}{n}+C+1\right) \log x \\
& =O\left(\log ^{2} x\right)=O(\sqrt{x})
\end{aligned}
$$

We find therefore, by (8),

$$
\begin{aligned}
& F(x) \log x+\sum_{n \leq x} F\left(\frac{x}{n}\right) \Lambda(n) \\
& \quad=O\left(\sum_{n \leq x} \sqrt{\frac{x}{n}}\right)=O\left(\sqrt{x} \int_{0}^{x} \frac{d \xi}{\sqrt{\xi}}\right)=O(x)
\end{aligned}
$$

whence follows, by (9) and (6),

$$
\begin{aligned}
& \psi(x) \log x+\sum_{n \leq x} \psi\left(\frac{x}{n}\right) \Lambda(n) \\
& \quad= x \log x+\sum_{n \leq x} \frac{x}{n} \Lambda(n)-(C+1) \log x-(C+1) \sum_{n \leq x} \Lambda(n)+O(x) \\
& \quad=2 x \log x+O(x)+O(\psi(x)) .
\end{aligned}
$$

Since $\psi(x)$ and $\Lambda(n)$ are non-negative, we obtain, from (10),

$$
\psi(x)(\log x+O(1)) \leqq O(x \log x)
$$

and hence

$$
\begin{equation*}
\psi(x)=O(x) . \tag{11}
\end{equation*}
$$

Inserting (11) in (10), we find the desired formula (2).
It may be mentioned, as a subsidiary result, that the following known formula follows at once from (11) and (6) :

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Reference.

Atle Selberg: An elementary proof of the prime-number theorem; Ann. of Math. (2), vol. 50 (1949), pp. 305-313.

