74. On Some Representation Theorems in an Operator Algebra. I.

By Hisaharu UMEGAKI. Mathematical Institute, Kyûshû University. (Comm. by K. KUNUGI, M.J.A., July 12, 1951.)

I. E. Segal has proved that a state of a C^* -algebra is the normalizing function of some normal representation (cf. [2]¹). (C^* -algebra is a uniformly closed self-adjoint operator algebra on a Hilbert Space, in the terminology of I. E. Segal.) Applying the Reduction Theory of J. von Neumann (cf. [1]) for this theorem, we can see that a state of a separable C^* -algebra is a directed integral of a system of pure states, and we can see a similar result for trace instead of state (the terminologies of state, pure state and trace etc. are of I. E. Segal [2] and M. Nakamura [3] respectively). This is a Theorem of Bochner's type in *-algebra. From this, we can easily see by a topological method the Bochner's Theorem for a separable locally compact group. (Recently, this theorem has been shown by F. I. Mautner [6].)

M. Nakamura [3] has introduced the two-sided representation of a C^* -algebra which is a generalized form of double unitary representation in the sense of R. Godement [8]. From his formulation, we can see that a two sided representation of a C^* -algebra is a directed integral of a system of irreducible two-sided representations. From this fact and the Bochner's Theorem, any twosided continuous unitary representation in a separable unimodular locally compact group is a directed integral of a system of irreducible two sided continuous unitary representations, it follows the same type theorem of F. I. Mautner [6] for one-sided continuous unitary representation of the group.

We shall describe in this paper only on a weight function $\sigma(\lambda)$ which generates the irreducible factors. But it may be possible to prove a decomposition for any N-function in the sense of von Neumann (cf. [1]) as a weight function.

Throughout this paper, we shall assume the separability axiom, because we shall use the Reduction Theory of J. von Neumann.

1. A Bochner's type Theorem in a C^* -algebra. Recently, the Theorem of this type has been proved for the case of non-separable central C^* -algebra by M. Nakamura-Y. Misonou [4], and for the

¹⁾ Number in Bibliography at the end of this paper.

case of commutative *-algebra by R. Godement [9]. In this section, we shall prove this theorem for any separable C^* -algebra.

Let \mathfrak{A} be a separable C^* -algebra. A state¹ of \mathfrak{A} is a complexvalued bounded linear functional on \mathfrak{A} such that $\omega(x^*)$ is the complex conjugate of $\omega(x)$, $\omega(x^*x) \geq 0$ for all $x \in \mathfrak{A}$ and $\sup \omega(x^*x) = ||\omega||(=$ $\sup |\omega(x)|)$. A state $\tau(x)$ is a trace if $\tau'(xy) = \tau(yx)$ for all $x, y \in \mathfrak{A}$. A state (resp. trace) $\chi(x)$ is pure if it is not a linear combination with positive coefficients of two other states (resp. traces). A C^* algebra or a L-algebra of a locally compact group has sufficiently many pure states (cf. [2]). On the case of the trace, it has been discussed in a central C^* -algebra by M. Nakamura-Y. Misonou [4] and in a central group by R. Godement [10].

Theorem 1. Let $\omega(x)$ be a state (resp. trace) on \mathfrak{A} . Then

(1)
$$\omega(x) = \int_{R} \chi(x, \lambda) d\sigma(\lambda)$$

where $\sigma(\lambda)$ is a suitable bounded real valued non-decreasing right continuous function on real line R which is a N-function of the sense of J. von Neumann [1], and $\chi(x, \lambda)$ is a pure state on \mathfrak{A} for almost every λ in R with respect to $\sigma(\lambda)$ -measure.

Proof. Let \Re be a set of $x \in \mathfrak{A}$ such that $\omega(yx) = 0$ for all $y \in \mathfrak{A}$, then \Re is a closed left-ideal in \mathfrak{A} . Hence we can make the factor space $[\mathfrak{A}] = \mathfrak{A}/\mathfrak{R}$, we shall denote by [x] the class containing x. Define

(2)
$$([y], [x]) = \omega(x^* y)$$

for x, y of \mathfrak{A} , then (2) is an inner product in $[\mathfrak{A}]$. Let \mathfrak{H} be the completion of $[\mathfrak{A}]$ by the norm $||[x]||^2 = ([x], [x])$. Then \mathfrak{H} is a separable Hilbert space, and the mapping from x of \mathfrak{A} to [x] of \mathfrak{H} is continuous. We shall define a representation of \mathfrak{A} on \mathfrak{H} by the following way:

$$x \rightarrow U_x$$
: $U_x[y] = [xy].$

Then, by the Theorem of I. Segal [2], the state $\omega(x)$ be represented by

(3)
$$\omega(x) = (U_x \xi, \xi)$$

for some element $\xi \in \mathfrak{H}$. Let A be a maximal commutative selfadjoint subalgebra of M which is the commutor of $M \coloneqq \{U_x | x \in \mathfrak{A}\}$. The decomposition of \mathfrak{H} and M with respect to A be

¹⁾ It can be seen that every positive bounded linear functional on \mathfrak{A} is a state in our sense, because it satisfies the Schwarz' inequality and \mathfrak{A} has an approximate identity.

H. UMEGAKI.

$$\mathfrak{H} = \int_{\mathcal{R}} \mathfrak{H}_{\lambda} \nu' \overline{d\sigma(\lambda)}, \qquad \mathbf{M} \sim \sum \mathbf{M}(\lambda)$$

where $\sigma(\lambda)$ is a weight function generated by A. By the theorem of F. Mautner [7], almost every \mathfrak{F}_{λ} is irreducible under $\mathcal{M}(\lambda)$. We denote $\xi = \int_{\mathcal{K}} \xi_{\lambda} \sqrt{d\sigma(\lambda)}$ and $U_x \sim \sum U_x(\lambda)$ for $\xi \in \mathfrak{F}$ and $x \in \mathfrak{A}$. Then we have

(4)
$$(U_x\xi, \xi) = \int_{\mathcal{R}} (U_x(\lambda)\xi_\lambda, \xi_\lambda) d\sigma(\lambda),$$

and put $\chi(x, \lambda) = (U_x(\lambda)\xi_{\lambda}, \xi_{\lambda})$ a.e. $\sigma(\lambda)$ -measure. By the Reduction Theory of von Neumann, for the decomposition

$$U_x \sim \sum U_x(\lambda)$$
 and $U_y \sim \sum U_y(\lambda)$

we have

$$U_{xy} = U_x U_y \sim \sum U_{xy}(\lambda), \quad \sim \sum U_x(\lambda) U_y(\lambda) ,$$

(5)
$$U_{x*} = U_{x*} \sim \sum U_{x*}(\lambda), \quad \sim \sum U_{x*}(\lambda)$$

and the decomposition is unique for all $x, y \in \mathfrak{A}$ except for a set of $\sigma(\lambda)$ -measure zero, since \mathfrak{A} is separable. It follow that almost all $\lambda \{U_x(\lambda), \mathfrak{H}_{\lambda}\}$ is an irreducible representation of \mathfrak{A} , and $\chi(x, \lambda)$ is a normalizing function of $\{U_x(\lambda), \mathfrak{H}_{\lambda}\}$. Hence almost all $\lambda \chi(x, \lambda)$ is a pure state. Thus we have the relation (1) for the case of state.

Remark 1. Theorem 1 can be also hold for a case that a complete normed*-algebra with an approximate identity and a state. For, in such a *-algebra.

$$\omega(y^*x^*xy) \leq \lim ||(x^*x)^n||^{1/n} \omega(y^*y) \leq ||x||^2 \cdot \omega(y^*y)$$

and therefore $||U_x[y]|| \leq ||x|| ||[y]||$, or $|||U_x||| \leq ||x||$ where $|||\cdot|||$ is the operator norm. Since a.e. $\sigma(\lambda) |||U_x(\lambda)||| \leq |||U_x|||$, a.e. $\sigma(\lambda)$ the representations $\{U_x(\lambda), \mathfrak{H}_{\lambda}\}$ are continuous. (It is known that any representation of a B^* -algebra is necessarily continuous, and from above fact it also hold in our case.) It can be seen by the same way on the case of C^* -algebra that a state is a normalizing function of the corresponding representation and conversely a normalizing function of a normal representation is a state. Thus, Theorem 1 be held for any such an algebra. This fact will be used for the proof of the Bochner's Theorem in a topological group (Theorem 3, below).

2. On a decomposition of a two-sided representation of a C^* -algebra. The two-sided representation of a C^* -algebra has been introduced by M. Nakamura [3], it is a general case for a locally compact group introduced by R. Godement (cf. [8]) which he has called double unitary representation.

330

An involution j is a conjugate linear transformation on a Hilbert space \mathfrak{H} of preriod two onto itself with $(j\xi, j\eta) = (\eta, \xi)$ for any $\xi, \eta \in \mathfrak{H}$. $\{U_x, V_x, j, \mathfrak{H}\}$ is a two-sided representation of a C*-algebra \mathfrak{A} , if $x \to U_x$ is a usual representation and $x \to V_x$ is a dual representation:

(6)
$$V_{xy} = V_y V_x$$
, $U_x V_y = V_y U_x$ and $V_x^* = j U_x j$.

M. Nakamura has proved that a C^* -algebra with a trace has a normal two-sided representation. We have

Theorem 2. A normal two-sided representation of a reparable C^* -algebra is a directed integral of a system of irreducible two-sided representations¹).

Proof. Let $\{U_x, V_x, j, \mathfrak{H}\}$ be a two-sided representation, and \mathcal{A} be a maximal commutative self-adjoint subalgebra of \mathcal{M}' such that every element A of \mathcal{A} satisfying $jAj = A^*$, where \mathcal{M}' is a commutor of $\mathcal{M} = \{U_x, V_y | x, y \in \mathfrak{A}\}$. By the same way in Theorem 1, decompose \mathfrak{H}, U_x and V_x with respect to \mathcal{A} :

$$\begin{split} \mathfrak{H} &= \int \mathfrak{H}_{\lambda 1} \sqrt{d\sigma(\lambda)}, \quad U_x \sim \sum U_x(\lambda) \quad \text{and} \quad V_x \sim \sum V_x(\lambda) \,. \\ V_{xy} &= V_y V_x \sim \sum V_{xy}(\lambda), \quad \sim \sum V_y(\lambda) V_x(\lambda) \,. \\ U_x V_y &= V_y U_x \sim \sum V_x(\lambda) V_y(\lambda), \quad \sim \sum V_y(\lambda) U_x(\lambda) \,. \\ V_{x^*} &= V_{x^*} \sim \sum V_{x^*}(\lambda), \quad \sim \sum V_{x^*}(\lambda) \,. \end{split}$$

and the decomposition is unique (a.e. $\sigma(\lambda)$) for all $x, y \in \mathfrak{A}$ since \mathfrak{A} is separable, and therefore

$$egin{aligned} V_{xy}(\lambda) &= V_y(\lambda) V_x(\lambda), & V_x*(\lambda) &= V_x*(\lambda) \ U_x(\lambda) V_y(\lambda) &= V_y(\lambda) U_x(\lambda) \end{aligned}$$

for all $x, y \in \mathfrak{A}$ (a.e. $\sigma(\lambda)$). We have already proved in Theorem 1 that $\{U_x(\lambda), \mathfrak{F}_{\lambda}\}$ is a usual representation (a.e. $\sigma(\lambda)$). Now we shall research $j(\lambda)$ which is a component on \mathfrak{F}_{λ} of the decomposition of j, and prove that $j(\lambda)$ is our involution on \mathfrak{F}_{λ} (a.e. $\sigma(\lambda)$). For any $\xi \in \mathfrak{F}$, denote $\xi = \int \xi_{\lambda} \sqrt{d\sigma(\lambda)}$ and $j\xi = \int \zeta_{\lambda} \sqrt{d\sigma(\lambda)}$ and define $j(\lambda)$ such as

$$j(\lambda): \zeta_{\lambda} = j(\lambda)\xi_{\lambda}$$
, a.e. $\sigma(\lambda)$.

The decomposition $j \sim \sum j(\lambda)$ be possible because $A^* = jAj$ for all $A \in A$.

Since $(j\xi, j\eta) = (\eta, \xi)$ for arbitrary $\xi, \eta \in \mathfrak{H}$,

No. 7.]

¹⁾ A two-sided representation $\{U_x, V_x, j, \mathfrak{H}\}$ is irreducible if no proper subspace of \mathfrak{H} exists which is invariant under U_x , V_x ($x \in \mathfrak{A}$) and j (cf. [3])

H. UMEGAKI.

$$\int_{R} (j(\lambda)\xi_{\lambda}, j(\lambda)\eta_{\lambda}) d\sigma(\lambda) = \int_{R} (\eta_{\lambda}, \xi_{\lambda}) d\sigma(\lambda)$$

and $(j\xi, jB\eta) = (B\eta, \varepsilon)$ for any bounded operator B on \mathfrak{H} . Let $\varphi(\lambda)$ be a bounded real valued $\sigma(\lambda)$ -measurable function on R and we define a bounded operator B_{φ} :

(7)
$$B_{\varphi} = \int_{R} \varphi(\lambda) \dot{\eta_{\lambda}} \sqrt{d\sigma(\lambda)}$$

where

 $\eta = \int \eta_{\lambda} \sqrt{d\sigma(\lambda)}$, then B_{φ} is a bounded operator on \mathfrak{H} .

Therefore, for any bounded real valued $\sigma(\lambda)$ -measurable function $\varphi(\lambda)$

(8)
$$\int_{\mathbb{R}} \varphi(\lambda)(j(\lambda)\xi_{\lambda}, j(\lambda)\eta_{\lambda})d\sigma(\lambda) = \int_{\mathbb{R}} \varphi(\lambda)(\eta_{\lambda}, \xi_{\lambda})d\sigma(\lambda).$$

However, any bounded complex $\sigma(\lambda)$ -measurable function $\phi(\lambda)$ is decomposed into φ_1 and φ_2 (real) such that $\phi(\lambda) = \varphi_1(\lambda) + i\varphi_2(\lambda)$, and therefore (8) holds for any such function $\phi(\lambda)$ on R. Hence we obtain

$$(j(\lambda)\xi_{\lambda}, j(\lambda)\eta_{\lambda}) = (\eta_{\lambda}, \xi_{\lambda}), \text{ a.e. } \sigma(\lambda).$$

Since \mathfrak{A} is separable, for all $x \in \mathfrak{A}$

$$j(\lambda)U_x(\lambda)j(\lambda) = V_x^*(\lambda)$$
, a.e. $\sigma(\lambda)$.

By Mautner's Theorem, almost all λ , \mathfrak{H}_{λ} are irreducible under $\mathcal{M}(\lambda)$. Hence a.e. $\sigma(\lambda) \{U_x(\lambda), V_x(\lambda), j(\lambda), \mathfrak{H}_{\lambda}\}$ are irreducible twosided representations and its directed integral with respect to $\sigma(\lambda)$ -measure is $\{U_x, V_x, j, \mathfrak{H}\}$.

References.

1) J. von Neumann: On Rings of Operators. Reduction Theory. Ann. of Math. 50 (1949), pp. 401-485.

2) I.E. Segal: Irreducible Representations of Operator Algebra. Bull. Amer. Math. Soc. **48** (1947). 73-88.

3) M. Nakamura: The Two-sided Representations of an Operator Algebra. Proc. Japan Acad., 27 (1951), 4, 172-176.

4) M. Nakamura and Y. Misonou: Centering of an Operator Algebra; appear in Tohoku Math. J.

5) F. I. Mautner: Unitary Representations of Locally Compact Groups. I. Ann. of Math. 51 (1950), 1-25.

6) F. I. Mautner: Unitary Representations of Locally Compact Groups. II. Ann. of Math. 52 (1951), 528-555.

7) R. Godement: Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc. **63** (1948), 1-89.

8) R. Godement: Sur la théorie des représentations unitaires. Ann. of Math. 53 (1951). 68-124.

332

9) R. Godement: Sur la théorie des caractères. I et II, C. R. Paris **229** (1949). 976-979, 1050-1051.

10) R. Godement: Analyse harmonique dans les groupes centraux I, ibid. 225 (1949). 19-21.

11) H. Yoshizawa: On Some Type of Convergence of Positive Definite Functions. Osaka Math. J. 1 (1949), 90-94.