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5. Continuous process.
In preceding sections we have considered a stepwise process of

eross-breeding and determined an explicit orm of general formulae
representing distribution in nth generation. In the present seetion
we shall idealize the process such that it proceeds continuously
with the lapse of the time. According to such a manner of treat-
ment, the sums or differences of various kinds in the previous
diseussion will then be replaced by the corresponding integrals or
derivatives. It will also be reeognized that several formulae will
be considerably clarified by such an idealization.

We have considered, in 3, the general class X’-X’ (0

_
u

<: 2) appearing in the nth generation, whieh possesses the frequeney
of the gene given by (8.10), namely by

2-"((2’--u.)p’+up") (1--2-u)p+2 upS" (i----- 1,..., m).

When the discrete variable n restricted to integral values runs
rom 0 to 2’, this frequency varies rom p to p’. Correspondingly,
we introduce a requency of the gene A, given by

(5.1) p(x) (l--x) p’+xp’( (i 1,..., m)

depending linearly on a continuous variable x running over the
closed interval 0__ x__ 1, where {p} and {p’} denote two given
fixed distributions; x being a quantity which corresponds to 2-*u
in the previous discrete case. Evidently, it holds always

p,(x) x) p, + x p, x) + x

The freqtleIlcy p() iS ]SO cotaed in the intervl between
p’, both endB incluBive.

We further introduce the vrible % representing the time,
and denote by (x; ) the population-density at-the time t. Suppos-
ing, for the sake of brevity, that the total population remains
constant, it will be expressed by

(5.2) ’ (x; t) dx.
do
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While we could consider a more general case where the total
population varies with t, our assumption represents that ,/ in (5.2)
is independent t. We now define the relative density by

p(x; t) (x; t)/zl (0 x .. 1 0 t)

Because of (5.2), we then get

(5.4) I: (x; t) dx --1

or any t.
We denote by X(x, y; t) the mating-velocity between the indivi-

duals belonging to the classes with distribution p(x) and with p(y);
namely, let the matings between such individuals, within the time-
interval from t to t+dt, take place with the density given by
X(x,y; t)dt. More precisely, let the number of matings between
the individuals belonging to the classes with distributions from
p(x) to p(x+ dx) and from p(y) to p,(y+ dy) be

X(x, y; t) dx dy dt

We further introduce the mating-velocity of population-density
expressed by

(5.5) q(x, y; t) X(x, y; t)/A (0

___
x, y 1 0 t)

We put, for convenience, ;(x, y; t) 0 outside 0 x, y 1, and
then correspondingly

(5.6) q(x, y; t) 0 (outside 0

__
x, y

_
1).

In view o the definition we remember the symmetry character
,(x, y; t) .(y, x; t), whence it ollows also that the symmetry
relation

(5.7) q(x, y; t) p(y, x; t)

is valid for all possible values of x, y and of t.
We first conclude, because of the definition, that the increase

of the relative density (5.3) for fixed x is expressed in the form

O(x; t + dt)--O(x; t) q(x, y; t) dt dy+ 2 q(y, z; t) dt dy

 tll o +
Here the convention (5.6) is used; in particular, it may be under-
stood that

’o(y, 2x--y; t)dy (2x 1),

lo(Y, Sx--y;t) dy

e(y, -y; t) dy (2z> D-2x
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The above equation yields immediately a fundamental relation

(5.8) Op(x; t) I’o(_(x y; t) + 2p(y, 2x-y; t)) dy
t

and, by integration,

(x; t)=/(x; 0)+ I: dt I:(--q(x, y; t)+ 2q(y, 2x--y; t))dy.(5.9)

Now, the frequency of the gene A over the whole pulation
is evidently given by

(5. 10) dx.

It will be expected, based on our above mentioned assumption, that
this quantity expresses the frequency of A in the limit distribution
and is consequently independent of t. The fact of this independency
may indeed also be shown analytically in the following manner. In
fact, differentiation of the expression in the right-hand side of (5.10)
leads us, by taking (5.8) into account, to

d.’ ,() ,(; t)dx : p.(x) p(x; t) dx
dt dt

o.
()(-(’ ; t) +P(’-; t)) gg

()(, ; 0gg

Replacing the letter z for integration variable by x everywhere in
the last integral, and remembering the convention (5.6)and the
symmetry relation (5.7), we further get

dt

(x--y) (x, y; t) dx dy.
2 oo

By using now again the symmetry relation (5.7), it will be easily
verified that the last integral evidently vanishes, yield4ng he required
independency of the expression in the right-hand side on t. The
now proved fact corresponds just to the last statement of 3.

We substitute for p(x) its expression (5.1), i.e.,

(5.11) p(x) pi--(p’--p;’) x,

in the right-hand member of (5.10). In view of (5.4), it becomes
then

(5.12) p, p.;--(p;--p;’) [’ x ,o(x; t) dx
jo
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Since, as just noticed, p is independent t, so is also the last integral.
Consequently, we get immediately a useful relation"

I’o o)) dx O.

Denoting, in general, the frequencies of homozygote A,: and
heterozygote A(i :3j) at t by .P,(t) and P,,,(t) respectively, we then
get

P,(t) I: P(X)" g(x; t) dx

(5.14) (i,j 1, ..., m;i ..j),

I’P;(t) 2 p,(x) p(x) g(x; t) dx

the expressions which are again after substituting (5.11) and re-
membering (5.4), written also in the form

p, --2(p;--p,’) xo(x; t)dx+ (p,--p, oxT(x; t)dx

Po(t) 2p; pj- 2(2p. Pl--P’PI" P’(Pl) I’o xp(x; t)dx

j).

In view of (5.13), we deduce the result

P,(t) P,(O) (p’,-- p’,’)"- F(t),
(.5) (i, j , .., m; i ..j),

Pv(t) Pv(O --2(p-- p’() (p[ p’) F(t)

by introducing the expression

(g. 16) F(t) ((; 0)--0(; t)) dx

where the tunetion 0(; g) is given by the expression (15.9). It is
evidently seen that this result eorresponds to the main result in

the discrete ease; namely, (g.15) corresponds to (2.80) and F(0 to
[,(o in (.81).

The above discussion thus shows that, if we consider a conti-
nuous process, the main result can be obtained in quite a clear
from. However, it is not regarded as an immediate generalization
of the previous result on diserete ease. But, in order to establish
sueh a generalization, we have only to introduce the concept of
Stieljes integral instead of that of ordinary integral. For instance,
instead of making use of the relative density p(x; t) ( 0) in (5.3),
we introduce a monotone increasing set-function

(5.17) (x; t) (0 x 1 0 t)
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which, in case of non-existence of the density-function t(x; t), will
be used as a substitute and a generalization of the indefinite integral

o(x; t) dx.

This set-function is supposed to satisfy the identity

jx=

corresponding to (5.4), where d(z; t) denotes o course the dierential
with respect to the variable z; the eventual jumps appearing at
both ends must be taken into account, as emphasized explicitly in
the second member in (5.18).

Under these circumstances, our main result (5.15) and (5.16)
wll take the ollowng form"

(5.9) (, , ..., ....)
P(t) P(0) 2(p--/)(p p’)F(t)

and 0nstead o (5.16))

Now, the result corresponding to (4.1) is quite evident already
rom (5.15); namely, we get

(5.2) ,(t P(o) (, , ..., m 0 ),

provided only or some . But, it l’,t) has been generalized
into the Stieltjes from (5.20), the relation (.3) in discrete process
can also be deduced as a special ce o our present result. In
fact, we now suppose especially tha the initial distribution is
represented by a unction (x; 0) such that

[(x; o)}: +’ ’ ’,

that s, (; O) be a step uctio possessing its jumps oly at the
ed-points o the itervaI, it the ollows that

I xd(x" 0) ’o X d(x; 0) "
and hence, in view of (5.13)

F(t) "-- ’ x’d(x; t)= [’ (x-x) d(x; t)
do
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Because of monotone increasing character of (x; t) the inequality
(x--xgdo.(x; ) _. 0 being valid always in the interval 0 x 1,
it surely follows that F(t) 0 always. Moreover, it is evidently
seen that l’(t) 0 for t 0 unless a(x; t)(x; 0), whence it is
concluded that the result

(5.22) P,,(t) < P(o) (o < t)

corresponding to (4.3) is also valid.
Various results in the discrete case will also be generalized

correspondingly. In particular, our previous main result itself may
also be regarded as a special case of the last result (5.19)and (5.20)
represetened in Stieltjes form, where the set-function (x; 0)--(x; t)
is derived from an another suitable function of x, y, t generalizing
the mating-velocity which reduces particularly to a step-function
with respect to the first two variables.




