113. Remarks on the Topological Group of Measure **Preserving Transformation.**

By Shigeharu HARADA.

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1951.)

I. Introduction. Let I be the unit interval and m be the Lebesgue measure. Let G be the group of all measure preserving transformations of I onto itself. For any $S \in G$, measurable set A, and positive number ε , define neighbourhood N(S) of S as follows:

$$N(S) = N(S, A, \epsilon) = \{T : m(S(A) \ominus T(A)) < \epsilon, m(S^{-1}(A) \ominus T^{-1}(A)) < \epsilon\}.$$

With this topology G is a complete topological group. The purpose of this note is to prove the following two properties of G.

Theorem 1. G is simple, i.e. G contains no closed normal subgroup except G and the identity E of G.

Theorem 2. G is arcwise connected.

II. Preliminaries. The following definitions and results of P. **R.** Halmos¹) are used in the sequel.

1. A measure preserving transformation T is called nowhere periodic if $m\{x: x \in I, T^n x = x \text{ for some } n\} = 0.^{2}$

2. If both T and S have exactly the same period n, then T and S are conjugate.³⁾

3. The conjugate class of any nowhere periodic measure preserving transformation is everywhere dense in $G^{(4)}$

III. Proof of Theorem 1. Let us denote by N any closed normals ubgroup of G.

Lemma 1. If N contains a transformation of period n^{5} , $n \ge 2$, then N contains a nowhere periodic transformation.

Proof. We shall prove this lemma in three steps: (i) n = 2, (ii) n = 3 and (iii) $n \ge 4$.

(i) n = 2. Let S and T be the transformations Sx = -x and $Tx = -x + \gamma$ where γ is an irrational number, then both S and T are of period 2 and $Rx = STx = x + \gamma^{6}$. By 2 of II both S and T

¹⁾ P. R. Halmos: In general a measure preserving transformation is mixing, Ann. of Math., 45, 1944, pp. 786-792.

P. R. Halmos, loc. cit. p. 787.
P. R. Halmos, loc. cit. p. 789.

⁴⁾ P. R. Halmos, loc. cit. p. 789.

⁵⁾ In this note we shall call T to be of period n when T has exactly the period n.

⁶⁾ Cf. P. R. Halmos and J. von Neumann: Operator methods in classical mechanics II, Ann. of Math., 43, 1942, pp. 332-350.

belongs to N so R = ST belongs to N. Since R is nowhere periodic, N contains a nowhere periodic transformation.

Further it is easy to prove that if N contains a transformation S which is of period 2 on some measurable set A of positive measure and which is the identity transformation on I-A, then N contains a transformation R of period 2.

(ii) n = 3. Let T be the transformation $Tx = x + \frac{1}{3}$. Let

S be the transformation such that

$$Sx = \begin{cases} x + \frac{2}{3} & \text{for } 0 < x \leq \frac{1}{3} \\ x + \frac{5}{6} & \text{for } \frac{1}{3} < x \leq \frac{1}{2} \\ x + \frac{1}{2} & \text{for } \frac{1}{2} < x \leq \frac{2}{3} \\ \end{cases}, \frac{2}{3} < x \leq \frac{5}{6} \\ x \leq \frac{1}{2} \\ x \leq \frac{1}{3} \\ \frac{5}{6} < x \leq 1 \\ \end{cases}.$$

Then both T and S are of period 3, thus by 2 of II both T and S belong to N. Since ST belongs to N and is of period 2 on $A = \left\{x: 0 \le x \le \frac{2}{3}\right\}$ and is the identity transformation on I-A, N contains a transformation of period 2 (by (i)).

(iii) $n \ge 4$. Let T be the transformation $Tx = x + \frac{1}{n}$. Let S be the transformation such that

$$Sx = \begin{cases} x - \frac{1}{n} & \text{for } \frac{4}{n} < x \le 1 ,\\ x - \frac{2}{n} & \text{for } \frac{2}{n} < x \le \frac{4}{n} ,\\ x + \frac{1}{n} & \text{for } \frac{1}{n} < x \le \frac{2}{n} ,\\ x + \frac{n-1}{n} & \text{for } 0 < x \le \frac{1}{n} . \end{cases}$$

Then both S and T are of period n, so by 2 of II both S and T belong to N. Since ST is of period 3 on $B = \left\{x: 0 \le x \le \frac{3}{n}\right\}$ and is the identity transformation on I-B, we can prove by (ii) and (i) that N contains a transformation of period 2.

Thus the cases (ii) and (iii) have been reduced to the case (i). The proof of Lemma 1 is completed.

Lemma 2. If N contains a transformation $T \neq E$, then N contains a nowhere periodic transformation.

524

Proof. Let T be a transformation such that $T \neq E$. Then there exists the decomposition $I = \bigcup_{n=1}^{n=\infty} I_n^{(7)}$ of I such that $\{I_n\}$ are mutually disjoint invariant sets and T is of period n on I_n and nowhere periodic on I_{∞} . By the assumption the set $\Lambda =$ $\{n: m(I_n) \neq 0, n \neq 1\}$ is not empty. Applying Lemma 1 to the group G_n of all measure preserving transformations on I_n for every $n \in \Lambda, n \neq \infty$, we can prove that N contains a nowhere periodic transformation on $I-I_{\infty}$.

Since any transformation which is nowhere periodic both on $I-I_{\infty}$ and I_{∞} is nowhere periodic on *I*, *N* contains a nowhere periodic transformation. Thus the proof of Lemma 2 is completed.

If N contains an element different from the identity then by Lemma 2 N contains a nowhere periodic transformation. Therefore by 3 of II N coincides with G.

IV. Proof of Theorem 2.

Lemma 3. Let $I = A_1 \cup A_2$, $I = B_1 \cup B_2$ be any decompositions of I such that $m(A_1) = m(A_2) = m(B_1) = m(B_2) = \frac{1}{2}$ and $m(A_1 \cap A_2) = m(B_1 \cap B_2) = 0$. Then there exists a one-parameter subgroup U_t , $0 \leq t \leq 1$, such that $U_0 = E$, $U_1(A_1) = B_1$ and $U_1(A_2) = B_2$.

Proof. Put $A_1 \cap B_1 = C_1$, $A_2 \cap B_2 = C_2$. It is easy to prove that there exists a transformation S which is of period 2 on $I - (C_1 \cup C_2)$, $S(A_1 - C_1) = B_1 - C_1$, $S(A_2 - C_2) = B_2 - C_2$, and which is the identity transformation on $C_1 \cup C_2$. Using the fact that a transformation of period 2 is conjugate to the transformation R: $Rx = x + \frac{1}{2}$ (by 2 of II), we can find one-parameter subgroup U_i , $0 \le t \le 1$, such that $U_0 = E$, $U_1 = S$.

Thus the proof of the lemma is completed.

Let T be any measure preserving transformation and let I_0 , I_1 be a dyadic set of rank 1. Applying Lemma 2 to I_0 , I_1 and $T(I_0)$, $T(I_1)$, we get a one-parameter subgroup $V_t^{(1)}$, $0 \le t \le 1$, such that $V_0^{(1)} = E$, $V_1^{(1)}(I_0) = T(I_0)$ and $V_1^{(1)}(I_1) = T(I_1)$. Put

$$U_i^{(1)} = egin{cases} V_{2t}^{(1)} & ext{for} & 0 \leqslant t \leqslant rac{1}{2} ext{,} \ V_i^{(1)} & ext{for} & rac{1}{2} \leqslant t \leqslant 1 ext{.} \end{cases}$$

Let I_{00} , I_{01} , I_{10} , I_{11} be a dyadic set of rank 2. Applying Lemma 3 to $U_1^{(1)}(I_{00})$, $U_1^{(1)}(I_{01})$, $T(I_{00})$, $T(I_{01})$ and $U_1^{(1)}(I_{10})$, $U_1^{(1)}(I_{11})$, $T(I_{10})$, $T(I_{11})$, we get an arc $V_i^{(2)}$, $0 \le t \le 1$, such that $V_0^{(2)} = U_i^{(1)}$ and $V_1^{(2)}(I_{e_ie_2}) = T(I_{e_ie_2})$, $e_i = 0,1$. Put

$$U_t^{(2)} = egin{cases} U_t^{(1)} & ext{for} & 0 \leqslant t \leqslant rac{1}{2}\,, \ V_t^{(2)} & ext{for} & rac{1}{2} \leqslant t \leqslant rac{3}{4}\,, \ V_t^{(2)} & ext{for} & rac{1}{2} \leqslant t \leqslant rac{3}{4}\,, \ t \leqslant 1\,. \end{cases}$$

⁷⁾ The notation $\bigcup_{n=1}^{n=\infty} I_n$ means the sum of $I_1, I_2, \ldots, I_n, \ldots$ and I_{∞} .

S. HARADA.

We get successively the family of continuous arcs $\{U_i^{(n)}\}$ which satisfy the following properties;

(i) $U_i^{(n)}$ is continuous,

(ii)
$$U_0^{(n)} = E, \ U_1^{(n)}(I_{\epsilon_1\epsilon_2...\epsilon_n}) = T(I_{\epsilon_1\epsilon_2...\epsilon_n}),$$

(iii) $U_i^{(n+1)}(I_{\epsilon_1\epsilon_2...\epsilon_n}) = U_i^{(n)}(I_{\epsilon_1\epsilon_2...\epsilon_n})$ where $I_{\epsilon_1\epsilon_2...\epsilon_n}$, $\epsilon_i = 0, 1, i = 1, 2, ..., n$, is a dyadic set of rank n. It is obvious that $U_i^{(n)}$ converges uniformly with $n \to \infty$. Put $U_i = \lim_{n \to \infty} U_i^{(n)}$, then U_i , $0 \le t \le 1$, is also a continuous arc and $U_0 = E$, and $U_1 = T$.

Remark.⁸⁾ "Arc" of this proposition cannot be replaced by a "one-parameter subgroup". In fact in any small neighbourhood N(E) of the identity E there exists an element T of G through which no one-parameter subgroup passes. For example, an ergodic transformation $T \in N(E)$ with a rational proper value ± 1 has this property.

⁸⁾ This remark is due to Mr. H. Anzai.