137. On Completely Additive Classes of Sets with Respect to Carathéodory's Outer Measure.

By Shizu Еnomoто.

(Comm. by K. Kunugi, m.J.a., Dec. 12, 1951.)
The purpose of this paper is to investigate the relations between completely additive classes of sets with respect to Carathéodory's outer measure. This investigation has its source in an article by the author: On the notion of measurability ${ }^{1}$.

1. Let X be an abstract space (an arbitrary set), and μ be an outer measure of Carathéodory on X, i.e., μ is a real valued function $\mu(A)$ defined for each subset A of X satisfying the following conditions:
i) $0 \leqq \mu(A) \leqq+\infty$. ii) If $A_{1} \subset A_{2}$ then $\mu\left(A_{1}\right) \leqq \mu\left(A_{2}\right)$. iii) For any sequence of sets $\left\{A_{n}\right\}\left(A_{n} \subset X\right)$ it holds the relation $\mu\left(\cup_{n=1}^{\infty} A_{n}\right) \leqq$ $\sum_{n n=1}^{\infty} \mu\left(A_{n}\right)$. iv) $\mu(0)=0$ for the empty set 0 .

We denote by $\mathbb{E}(\mu)$ the class of all measurable sets in the sense of Caratheodory with respect to the outer measure $\mu^{2)}$. We assume further that there exists a sequence of sets $\left\{K_{n}\right\}$ such that $K_{n} \in \mathbb{C}(\mu)$, $K_{n} \subset K_{n+1}, \bigvee_{n=1}^{\infty} K_{n}=X$ and $\mu\left(K_{n}\right)<+\infty$. We call such a sequence $\left\{K_{n}\right\}$ a fundamental finite series. If $\mu(X)<+\infty$, then we can take $K_{n}=X$.

We say that a class of sets \mathfrak{M} is completely additive, when \mathfrak{M} satisfies the following conditions:
a) If $A_{i} \in \mathfrak{M}$, then $\cup_{i=1}^{\infty} A_{i} \in \mathfrak{M}$. b) If $A \in \mathfrak{M}$, then $\mathrm{C} A \in \mathfrak{M}^{3}$.

We say that \mathfrak{M} is finitely additive, when in a) $\cup_{i=1}^{\infty}$ is replaced by $\bigvee_{i=1}^{2}$.

We say that \mathfrak{M} is μ-completely additive (abbreviated μ-c.a.), when 刃il is completely additive and the relation $\mu\left(\bigvee_{i=1}^{\infty}\left(A_{i} \cap K_{n}\right)\right)=$ $\sum_{i=1}^{\infty} \mu\left(A_{i} \cap K_{n}\right)$ (for all n) holds, if $A_{i} \in \mathfrak{M}, A_{i} \cap A_{j}=0(i \neq j)$, and $\left\{K_{n}\right\}$ is a fundamental finite series. We say that \mathfrak{M} is μ-finit ly additive (abbreviated μ-f.a.), when \mathfrak{M} is finitely additive and the above relation holds if $\bigvee_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ are replaced by $\bigvee_{i=1}^{2}$ and $\sum_{i=1}^{p}$ resp.

These definitions are independent of the choice of the fundamental finite series $\left\{K_{n}\right\}$ (by Lemma 4), and coincide with the ordinary one if $\mu\left(\cup A_{i}\right)<+\infty$ (by Lemma 3).

Let $\Re(\mu)$ be the class of all sets A such that

$$
\mu\left(K_{n} \cap A\right)=\mu\left(K_{n}\right)-\mu\left(K_{n} \cap \mathrm{C} A\right) \quad \text { for all } n
$$

[^0]which is independent of the fundamental finite series $\left\{K_{n}\right\}$ (by Lemma 4).

By $\mathfrak{E}(\mu)$ we denote the class of all sets E such that
(O) $\mu(A)=\mu\left(A \cap E^{\prime}\right)+\mu\left(A \cap \mathrm{C} E^{\prime}\right) \quad$ for all $A \in \mathfrak{R}(\mu)$,
where we can assume $\mu(A)<+\infty$. We obtain easily :
Theorem 1. It hold the relations $\mathfrak{C}(\mu) \subset \mathfrak{G}(\mu) \subset \mathfrak{R}(\mu)^{4)}$ and \mathfrak{M} $\subset \mathfrak{R}(\mu)$ for every $\mu-c .(f$.$) a. class \mathfrak{M}$.

It will be found remarkable that $\mathfrak{C}(\mu)$, in stead of $\mathfrak{C}(\mu)$, plays a central rôle (Cf. Theorem 2 and Theorem 7).
2. Lemma 1. Let $\left\{K_{n}\right\}$ be a fundamental finite series, then for an arbitrary set $A \subset X$ we have $\lim _{n \rightarrow \infty} \mu\left(A \cap K_{n}\right)=\mu(A)$.

Proof : Easy. Cf. Halmos: Measure theory, §11, Theorem B.
Lemma 2. If it hold $A \subset \bigvee_{i=1}^{\infty} E_{i}, \mu(A)=\sum_{i=1}^{\infty} \mu\left(A \cap E_{i}\right)<+\infty$, $\mu(A)=\mu(A \cap F)+\mu(A \cap \mathrm{C} F) \quad$ and $\quad \mu\left(A \cap E_{i} \cap F\right)+\mu\left(A \cap E_{i} \cap \mathrm{C} F\right)=$ $\mu\left(A \cap E_{i}\right)$ for all i, then it holds : $\mu(A \cap F)=\sum_{i=1}^{\infty} \mu\left(A \cap E_{i} \cap F\right)$.

Proof. $\quad \mu(A)=\mu(A \cap F)+\mu(A \cap C F) \leqq \sum_{i=1}^{\infty} \mu\left(A \cap E_{i} \cap F\right)+$ $\sum_{i=1}^{\infty} \mu\left(A \cap E_{i} \cap \mathrm{C} F\right)=\sum_{i=1}^{\infty} \mu\left(A \cap E_{i}\right)=\mu(A)<+\infty$. Therefore $\mu\left(A \cap F^{\prime}\right)$ $=\sum_{i=1}^{\infty} \mu\left(A \cap E_{i} \cap F\right)$.

Lemma 3. If it holds $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)<+\infty$, where $A_{i} \cap A_{j}=0 \quad(i \neq j)$, then it holds for any $H \in \mathcal{C}^{-}(\mu): \mu\left(\cup_{i=1}^{\infty}\left(A_{i} \cap H\right)\right)$ $=\sum_{i=1}^{\infty} \mu\left(A_{i} \cap H\right)$.

Proof, Put in Lemma $2 A=\bigvee_{i=1}^{\infty} A_{i}, E_{i}=A_{i}$ and $F=H$.
Lemma 4. If it holds $\mu\left(\bigvee_{i=1}^{\infty}\left(A_{i} \cap K_{n}\right)\right)=\sum_{i=1}^{\infty} \mu\left(A_{i} \cap K_{n}\right)$ for all n, where $A_{i} \cap A_{j}=0(i \neq j)$, for a fundamental finite series $\left\{K_{n}\right\}$, then it holds for any $H \in \mathbb{C}^{(}(\mu): \quad \mu\left(\backslash_{i=1}^{\infty}\left(A_{i} \cap H\right)\right)=\sum_{i=1}^{\infty} \mu\left(A_{i} \cap H\right)$.

Proof. By Lemma 3 and Lemma 1.
3. In the sequel we shall use for simplicity the notation $\mu_{n}(A)$ in stead of $\mu\left(A \cap K_{n}\right)$. If we prove an equality for μ_{n} then we shall get the equality for μ itself (by Lemma 1).

Theorem 2. The class $\mathfrak{E}(\mu)$ is $\mu-c$. a. .
Proof. 1° It is clear that, if $E \in \mathfrak{F}(\mu)$ then $\mathrm{C} E \in \mathscr{F}(\mu)$.
2° If $E \in \mathfrak{C}(\mu)$ and $A \in \mathfrak{R}(\mu)$, then $A \frown E \in \mathfrak{R}(\mu)$. Because : $\mu\left(K_{n}\right)$ $=\mu_{n 2}(A)+\mu_{n n}(\mathrm{C} A)=\mu_{n n}(A \cap E)+\mu_{n 2}(A \cap \mathrm{C} E)+\mu_{n n}(\mathrm{C} A) \geqq \mu_{n 2}(A \cap E)$ $+\mu_{n_{2}}(\mathrm{C}(A \cap E)) \geqq \mu\left(K_{n}\right)$. Therefore $\mu\left(K_{n}\right)=\mu_{n 2}(A \cap E)+\mu_{n}(\mathrm{C}(A \cap E))$.
3° If $E, F \in \mathfrak{C}(\mu)$, then $E \cap F \in \mathbb{C}(\mu)$ and $E \cup F \in \mathfrak{C}(\mu)$. Because : For an arbitrary set $A \in \mathfrak{R}(\mu)$ such that $\mu(A)<+\infty$, we have $\mu(A)$ $-\mu(A \cap \mathrm{C}(E \cap F))=\mu(A \cap E)+\mu(A \cap \mathrm{C} E)-\mu(A \cap \mathrm{C}(E \cap F))$ $\geqq \mu(A \cap E \cap F)+\mu(A \cap E \cap \mathrm{C} F)+\mu(A \cap \mathrm{C} E)-\mu(A \cap \mathrm{C}(E \cap F) \cap E)$ $-\mu(A \cap \mathrm{C}(E \cap F) \cap \mathrm{C} E)=\mu(A \cap(E \cap F)), \quad$ hence $\mu(A) \geq \mu(A \cap(E \cap F))$ $+\mu(A \cap C(E \cap F)) \geq \mu(A)$. Therefore $E \cap F \in \mathscr{C}(\mu)$, and from 1° $E \cup F \in \mathfrak{E}(\mu)$.

[^1]4° If $A \in \mathfrak{R}(\mu), E, F \in \mathfrak{E}(\mu)$ and $E \cap F=0$, then $\mu(A \cap(E \cup F))$ $=\mu(A \cap E)+\mu(A \cap F)$. Because : Put $A \cap\left(E^{\prime} \cup F\right)$ in stead of A in (O).
5° If $E_{i} \in \mathscr{E}(\mu)$ and $E_{i} \cap E_{j}=0(i \neq j)$, then $\mu\left(\cup_{i=1}^{\infty} E_{i}\right)$
$=\sum_{i=1}^{\infty} \mu\left(E_{i}^{\prime}\right)$. Because: By $4^{\circ} \quad \sum_{i=1}^{m} \mu\left(E_{i}\right)=\mu\left(\bigvee_{i=1}^{m} E_{i}\right) \leqq \mu\left(\bigvee_{i=1}^{\infty} E_{i}\right)$, hence $\sum_{i=1}^{\infty} \mu\left(E_{i}\right) \leqq \mu\left(\bigvee_{i=1}^{\infty} E_{i}\right) \leqq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)$.
6° If $E_{i} \in \mathfrak{C}(\mu)$ then $\cup_{i=1}^{\infty} E_{i} \in \mathfrak{C}(\mu)$. It suffices to prove this only when $E_{i} \cap E_{j}=0 \quad(i \neq j)$. For any $A \in \mathscr{H}(\mu)(\mu(A)<+\infty)$ we have $\mu(A)-\mu\left(A \cap \mathrm{C}\left(\bigvee_{i=1}^{\infty} E_{i}\right)\right) \geq \mu(A)-\mu\left(A \cap \mathrm{C}\left(\bigcup_{i=1}^{n} E_{i}\right)\right)=\mu\left(A \cap\left(\bigvee_{i=1}^{n} E_{i}\right)\right)$ $=\sum_{i=1}^{n} \mu\left(A \cap E_{i}\right)\left(\right.$ by $\left.4^{\circ}\right)$, then $\mu(A)-\mu\left(A \cap \mathrm{C}\left(\bigvee_{i=1}^{\infty} E_{i}\right)\right) \geqq \sum_{i=1}^{\infty} \mu\left(A \cap E_{i}\right)$ $\geq \mu\left(A \cap\left(\cup_{i=1}^{\infty} E_{i}\right)\right)$, hence $\mu(A)=\mu\left(A \cap\left(\cup_{i=1}^{\infty} E_{i}\right)\right)+\mu\left(A \cap \mathrm{C}\left(\cup_{i=1}^{\infty} E_{i}\right)\right)$.

Corollary 1. In order that $\mathfrak{R}(\mu)$ be μ-c. a., it is necessary and sufficient that $\mu(A)=\mu(A \cap B)+\mu(A \cap C B)$ for all $A, B \in \mathfrak{R}(\mu)^{5)}$.
4. Let $\left\{\mathcal{M}_{\alpha}\right\}$ be a family of classes of sets. By $\left(\mathfrak{M}_{\alpha}\right)$ we denote the smallest finitely additive class of sets containing all \mathfrak{M}_{α} and by [\mathfrak{M}_{α}] the smallest completely additive class of sets containing all \mathfrak{M}_{a}.

Theorem 3. If \mathfrak{M} is $\mu-f$. a., then [$\mathfrak{M}]$ is $\mu-c . a$. .
Proof. Let $\left\{K_{n}\right\}$ be a fundamental finite series. Then ($\left.\left\{K_{n}\right\}, \mathfrak{M}\right)$ $=\mathfrak{M}_{K}$ is μ-f. a. ${ }^{6}$. Since μ is an outer measure we can easily prove that μ is a measure on \mathfrak{M}_{K}, i.e., if $E_{i} \in \mathfrak{M}_{K}, E_{i} \curvearrowleft E_{j}=0(i \neq j)$ and $\bigvee_{i=1}^{\infty} E_{i} \in \mathfrak{M}_{K}$, then $\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$. For an arbitrary set $A \subset X$, we define $\mu^{*}(A)$ by $\mu^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(E_{i}\right) ; E_{i} \in \mathfrak{M}_{K}, A \subset \cup_{i=1}^{\infty} E_{i}\right\}$. Then $\left[\mathfrak{M}_{K}\right]=\left[\left\{K_{n}\right\}, \mathfrak{M}\right]$ is μ^{*}-c. a., for every element of $\left[\mathcal{M}_{K}\right]$ is μ^{*}-measurable in the sense of Carathéodory ${ }^{7}$, and μ^{*} coincides with μ on \mathfrak{M}_{K}. It is clear that $\mu^{*}(A) \geqq \mu(A)$ for all A. We have only to show that $\mu^{*}(M)=\mu(M)$ for $M \in[\mathfrak{M}]$. Since $\mu\left(K_{n}\right) \leqq \mu\left(K_{n} \cap M\right)+$ $\mu\left(K_{n} \cap \mathrm{C} M\right) \leqq \mu^{*}\left(K_{n} \cap M\right)+\mu^{*}\left(K_{n} \cap \mathrm{C} M\right)=\mu^{*}\left(K_{n}\right)=\mu\left(K_{n}\right)$, then we have $\mu^{*}\left(K_{n} \cap M\right)=\mu\left(K_{n} \cap M\right)$, and by Lemma $1 \mu^{*}(M)=\mu(M)$.

Lemma 5. Let \mathfrak{M} and \mathfrak{H} be $\mu-f$. a. classes of sets such that $\mu_{2_{2}}(B)=\mu_{n}(B \cap M)+\mu_{n_{2}}(B \cap \mathrm{C} M)($ for all $n)$ for all $B \in \mathfrak{A}, M \in \mathbb{M}$ and for a fundamental finite series $\left\{K_{n}\right\}$. Then ($\mathfrak{M}, \mathfrak{2}$) is μ-f. a.

Proof. Let E be an element of ($\mathfrak{M}, \mathfrak{A}$), then there exist a finite number of elements $B_{i} \in \mathfrak{A}$ and $M_{i} \in \mathfrak{M}(i=1,2, \ldots, k)$, such that $B_{i} \cap B_{j}=0(i \neq j), \bigvee_{i=1}^{k} B_{i}=X$ and $E=\bigvee_{i=1}^{k}\left(M_{i} \cap B_{i}\right)$. Then it holds :

$$
\text { (*) } \quad \mu_{n}(E)=\sum_{i=1}^{k} \mu_{n}\left(M_{i} \cap B_{i}\right) \text {. }
$$

Because: Since $\mathfrak{M} \subset \mathfrak{R}(\mu)$, putting in Lemma $2 A=K_{n}, E_{i}=B_{i}$ for $1 \leqq i \leqq k, E_{i}=0$ for $i>k$ and $F=M(M \in \mathfrak{M})$, we get:

$$
\begin{equation*}
\mu_{n 0}(M)=\sum_{i=1}^{k} \mu_{n 0}\left(M \cap B_{i}\right) \quad \text { for } M \in \mathfrak{M} \tag{1}
\end{equation*}
$$

5) Cf. [E] Lemma 2.
6) Each element E of \mathfrak{M}_{K} will be expressed in the form $E=\left(\bigcup_{i=1}^{n}\left(K_{i}\right.\right.$ $\left.\left.-K_{i-1}\right)-M_{i}\right) \smile\left(\mathrm{C}_{n}-M_{n+1}\right)$ where $K_{0}=0, M_{i} \in \mathfrak{M}$; and $\mu(E)=\sum_{i=1}^{n} \mu\left(\left(K_{i}-K_{i-1}\right)-M_{i}\right)$ $+\mu\left(\mathrm{C} K_{n}-M_{n+1}\right)$.
7) Cf. Halmos: Measure theory $\S 12$ Theorem A.

And also, putting $A=K_{n} \cap M, E_{i}=B_{i}$ for $1 \leqq i \leqq k, E_{i}=0$ for $i>k$ and $F=M^{\prime}$, where $M, M^{\prime} \in \mathfrak{M}$, we get by (1)

$$
\begin{equation*}
\mu_{n}\left(M \cap B_{i}\right)=\mu_{n}\left(M \cap M^{\prime} \cap B_{i}\right)+\mu_{n}\left(M \cap \mathrm{C} M^{\prime} \cap B_{i}\right) . \tag{2}
\end{equation*}
$$

From (1) and (2) we have, putting $M=\bigcup_{j=1}^{k} M_{j}, \mu_{2 v}\left(\cup_{j=1}^{k} M_{j}\right)$
$=\sum_{i=1}^{k} \mu_{n}\left(\bigvee_{j=1}^{k} M_{j} \cap B_{i}\right)=\sum_{i=1}^{k}\left\{\mu_{n v}\left(\bigcup_{j=1}^{k} M_{j} \cap B_{i} \cap M_{i}\right)+\mu_{n 2}\left(\bigvee_{j=1}^{k} M_{j} \cap B_{i} \cap \mathrm{C} M_{i}\right)\right\}$
$=\sum_{i=1}^{k} \mu_{n 2}\left(B_{i} \cap M_{i}\right)+\sum_{i=1}^{k} \mu_{n 2}\left(\cup_{j \neq i} M_{j} \cap B_{i}\right) \geqq \mu_{n n}\left(\cup_{i=1}^{k}\left(B_{i} \cap M_{i}\right)\right)$
$+\mu_{n}\left(\bigvee_{i=1}^{k} \bigvee_{j \neq i}\left(M_{j} \cap B_{i}\right)\right) \geqq \mu_{n}\left(\bigvee_{j=1}^{k} M_{j} \cap \bigvee_{i=1}^{k} B_{i}\right)=\mu_{n}\left(\bigvee_{j=1}^{k} M_{j}\right)$.
Therefore we obtain ${ }^{(*)}$, where $E=\bigvee_{i=1}^{k}\left(M_{i} \cap B_{i}\right)$. Now let it be $E_{\nu} \in$ $(\mathfrak{M}, \mathfrak{H})(\nu=1,2)$ and $E_{1} \cap E_{2}=0$. Then E_{ν} can be expressed in the form $E_{\nu}=\bigcup_{i=1}^{k}\left(M_{i}^{\nu} \cap B_{i}\right) \quad(\nu=1,2)$, where $B_{i} \in \mathfrak{A}, B_{i} \cap B_{j}=0(i \neq j), M_{i}^{\nu} \in$ \mathfrak{M} and $M_{i}^{1} \cap M_{i}^{2}=0$. Then by ${ }^{(*)}$ and (2), $\mu_{n}\left(E_{1} \cup E_{2}\right)$ $=\mu_{i n}\left(\cup_{i=1}^{k}\left(\left(M_{i}^{1} \cup M_{i}^{2}\right) \cap B_{i}\right)\right)=\sum_{i=1}^{k} \mu_{n 2}\left(\left(M_{i}^{1} \cup M_{i}^{2}\right) \cap B_{i}\right)=\sum_{i=1}^{k}\left\{\mu_{i 2}\left(M_{i}^{1} \cap B_{i}\right)\right.$ $\left.+\mu_{n}\left(M_{i}^{2} \cap B_{i}\right)\right\}=\mu_{n}\left(E_{1}\right)+\mu_{n}\left(E_{2}\right)$.

Theorem 4. Let \mathfrak{M} and \mathfrak{A} be $\mu-c$. a. classes of sets. In order that $[\mathfrak{M}, \mathfrak{N}]$ be $\mu-c . a .$, it is necessary and sufficient that $\mu_{n}(B)$ $=\mu_{n n}(B \cap M)+\mu_{n}(B \cap \mathrm{C} M)($ for all $n)$ holds for all $B \in \mathfrak{A}, M \in \mathfrak{M}$ and for a fundamental finite series $\left\{K_{n}\right\}^{8)}$.

Proof. The necessity of the condition is clear. The sufficiency follows from Theorem 3 and Lemma 5.
5. Let $\mathrm{M}=\left\{\mathfrak{M}_{\alpha}\right\}$ be the system of all μ-c. a. classes of sets. M will be an ordered system in such a way that " $\mathfrak{M}_{\alpha} \leq \mathfrak{M}_{\beta}$ means that $\mathfrak{M}_{\alpha} \subset \mathfrak{M}_{\beta} "$.

Theorem 5. For each $\mathfrak{M} \in \mathbb{M}$ there exists a maximal element $\mathfrak{M} *$ of \mathbf{M} such that $\mathfrak{M} \leqq \mathbb{M}^{*}$.

Proof. Let $\left\{\mathbb{M}_{\alpha(\lambda)}\right\}(\lambda \in \Lambda)$ be any linearly ordered sub-system of M. Then $\left\{\mathcal{M}_{\alpha(\lambda)}\right\}$ has an upper bound in M. Because: One can easily prove that $\left(\cup_{\lambda \epsilon_{4}} \mathfrak{M}_{\alpha(\lambda)}\right)=\cup_{\lambda \epsilon_{4}} \mathfrak{M}_{\alpha(\lambda)}$, and that $\cup_{\lambda \epsilon_{4}} \mathfrak{M}_{\alpha(\lambda)}$ is μ-f. a., hence by Theorem $3\left[\bigvee_{\lambda \epsilon_{A}} \mathfrak{M}_{\alpha(\lambda)}\right]$ is μ-f.a., which is an upper bound of $\left\{\mathfrak{M}_{\alpha(\lambda)}\right\}$. Thus, by Zorn's Lemma holds Theorem 5.

Theorem 6. The union of all maximal $\mu-c . a$. classes $\mathfrak{M}_{\alpha}^{*} \in \mathbf{M}$ coincides with $\mathfrak{R}(\mu)$: $\bigvee_{a} \mathfrak{M}_{\alpha}^{*}=\mathfrak{R}(\mu)^{9)}$.

Proof. By Theorem 1: $\bigvee_{\alpha} \mathfrak{M}_{\alpha}^{*} \subset \mathfrak{R}(\mu)$. Let A be any element of

[^2]$\mathfrak{R}(\mu)$. Then $(A, \mathrm{C} A)$ is itself μ-c. a. . By Theorem 5 there exists a maximal $\mathfrak{M}_{\alpha}^{*}$ containing $(A, \mathrm{C} A)$. Therefore $\cup_{\alpha} \mathfrak{M}_{\alpha}^{*} \supset \mathfrak{R}(\mu)$.

Theorem 7. The intersection of all maximal μ-c.a. classes $\mathfrak{M}_{\alpha}^{*} \in \mathbf{M}$ coincides with $\mathfrak{F}(\mu): \bigcap_{\alpha} \mathfrak{M}_{\alpha}^{*}=\mathfrak{F}(\mu)$.

Proof: Since $\mathfrak{M}_{\alpha}^{*} \subset \mathfrak{R}(\mu)$, then by Theorem 4 [$\mathfrak{M}_{\alpha}^{*}$, $\left.\mathfrak{F}(\mu)\right]$ is also μ-c. a. . Hence $\mathfrak{F}(\mu) \subset \mathfrak{M}_{\alpha}^{*}$. Therefore $\mathfrak{E}(\mu) \subset \cap_{a} \mathfrak{M}_{\alpha}^{*}$. Let us assume that $\mathfrak{C}(\mu) \neq \mathfrak{R}(\mu)$. Let A_{i} be any element of $\mathfrak{R}(\mu)-\mathfrak{F}(\mu)$. Then there exists an $A_{2} \in \mathfrak{R}(\mu)$ such that

$$
\begin{equation*}
\mu\left(A_{2}\right)<\mu\left(A_{2} \cap A_{1}\right)+\mu\left(A_{2} \cap \mathrm{C} A_{1}\right) . \tag{**}
\end{equation*}
$$

By Theorem 4 and Theorem 5 there exists a maximal element of $\mathbf{M}_{3} \mathfrak{M}_{0}^{*}$, such that $\mathfrak{M}_{0}^{*}>\left[\mathcal{E}(\mu),\left(A_{2}, \mathrm{C} A_{2}\right)\right]$. But $A_{1} \bar{\xi} \mathfrak{M}_{0}^{*}$ by (**). Therefore $\cap_{a} \mathfrak{M}_{\alpha}^{*} \subset \mathfrak{F}(\mu)$. If $\mathfrak{F}(\mu)=\Re(\mu)$, we have also $\cap_{\alpha} \mathfrak{M}_{\alpha}^{*} \subset \mathfrak{F}(\mu)$.

Corollary 2. The necessary and sufficient condition that the ordered system \mathbf{M} be a directed system, is that $\mathfrak{E}(\mu)=\mathfrak{R}(\mu)$.

Proof. If there exists only one maximal element \mathfrak{M}^{*} of \mathbb{M}, then by Theorem 6 and Theorem 7 holds: $\mathfrak{F}(\mu)=\mathfrak{M}^{*}=\mathfrak{R}(\mu)$. In this case M is a directed system. If there exist at least two different maximal elements \mathfrak{M}_{1}^{*} and \mathfrak{M}_{2}^{*} of \mathbf{M}, then \mathbf{M} is not directed. By Theorem 6 and Theorem 7, we have in this case $\mathfrak{F}(\mu) \neq \mathfrak{R}(\mu)$.
6. Remark. There are such cases that $\mathfrak{C}(\mu) \neq \mathfrak{C}(\mu)$ and $\mathfrak{C}(\mu) \neq$ $\mathfrak{R}(\mu)$, as the following examples show them ${ }^{10}$.

Example 1. X consists of 3 points $a, b, c ; X=(a, b, c)$, and μ is defined as follows : $\mu((a))=2, \mu((b))=\mu((c))=3, \mu((b, c))=\mu((c, a))$ $=\mu((a, b))=4, \quad \mu(X)=6$. Then $\mathfrak{F}=\mathfrak{R}=\{0,(a),(b),(c), X\}$, but $\mathfrak{c}=\{0, X\}$.

Example 2. $X=(a, b, c), \mu$ is defined as follows : $\mu((a))=\mu((b))$ $=\mu((c))=2, \mu((b, c))=\mu((c, a))=3, \mu((a, b))=4, \mu(X)=5$. Then $\mathfrak{R}=\{0,(a),(b),(b, c),(c, a), X\}$, but $\mathfrak{C}=\mathbb{C}=\{0, X\}$.

[^0]: 1) By S. Enomoto, this proc. vol. 27, No. 5, p. 208. It will be denoted by [E].
 2) A set E is said to be measurable in the sense of Carathedory when $\mu(A)=\mu(A \frown E)+\mu(A \frown C E)$ holds for all $A \subset X$.
 3) $\mathrm{C} A$ denotes the compliment of $A: \mathrm{C} A=X-A$.
[^1]: 4) Cf. the remark at the end of this paper.
[^2]: 8) It is clear that the intersection of an arbitrary number of μ-c. a. classes $\mathfrak{U}_{\lambda}(\lambda \in \Lambda)$ is also $\mu-c$. a. . Theorem 4 can be extended as follows: "Let $\mathfrak{Q}_{\lambda}(\lambda \in \Lambda)$ be μ-c. a. classes of sets. Then the necessary and sufficient condition that $\left[\mathfrak{R}_{\lambda}(\lambda \in \Lambda)\right]$ be μ-c. a. is that for an arbitrary finite number of $\mathscr{N}_{\lambda(i)}(i=1,2, \ldots, k ; k \geqq 2)$ holds the relation: $\mu_{n}\left(\bigcap_{i=1}^{k-1} A_{i}\right)=\mu_{n 2}\left(\bigwedge_{i=1}^{k-1} A_{i} \perp A_{k}\right)+\mu_{n}\left(\bigwedge_{i=1}^{k-1} A_{i} \perp \mathrm{C} A_{k}\right)$, for all $A_{i} \in \mathbb{U}_{\lambda(i)}{ }^{\prime \prime}$.
 9) By Theorem 5, Theorem 6 and Theorem 7 holds: "the union of all classes $\mathfrak{M}_{\alpha} \in \mathbf{M}$ containing $\mathfrak{E}(\mu)$ coincides with $\mathfrak{N}(\mu) "$. We can here replace $\mathfrak{E}(\mu)$ by $\mathbb{C}(\mu)$ (by Theorem 1), Cf. [E] Lemma 3.
