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137. On Completely Additive Classes of Sets with
Respect to Carathodory’s Outer Measure.

By Shizu ENOMOTO.
(Ccmm. by K. KUNUCI, M.J.A., Dec. 12, 1951.)

The purpose of this paper is to investigate the relations be-
tween completely additive classes of sets with respect to Carath-
odory’s outer measure. This investigation has its source in an
article by the author: On the notion of measurabilitff).

1. Let X be an abstract space (an arbitrary set), and be an
outer measure of Carathodory on X, i.e., is a real valued func-
tion (A) defined for each subset A of X satisfying the following
conditions

i) 0(A)+. ii) If ACA then (A) .(A:). iii) For
any sequence of sets {A,,}(A,X)it holds the relation (=A)

(A,). iv) g.(O)= 0 for the empty set O.
We .denote by () the class of all measurable setv in the sense

of Carath$odory with respect to lhe outer measure . We assume
further that there exists a sequence of sets {K,,} such that Ke (),
KK+, .K, X and (K,) + We call such a sequence
{K,,} a fundamental finite series. If .(X)+ , then we can take

We say that a class of sets is completely additive, when
satisfies the following conditions:

a) If Ae, then UT,Ae. b) If Ae, then CAeCa).
We say that is finitely additive, when in a) UT=, is replaced

by U
We say that is -completely additive (abbreviated -c.a.),

when )) is completely additive and the relation .(].,
7-, (A,K,,) (for all n) holds, if A,e, A,A 0 (ij), and
is a fundamental finite series. We say that is -finit ly additive
(abbreviated -f.a.), when is finitely additive and the above re-
lation holds if 7, and . are replaced by , and : resp.

These definitions are independent of the choice of the fundamental
finite series {K,,} (by Lemma 4), and coincide with the ordinary one
if (UA,) + (by Lemma 3).

Let (.) be the class of all sets A such that
(KA) (K,)--(K,,CA) for all n,

1) By S. Enomoto, this proc. vol. 27, No. 5, p. 208. It will be denoted by [E].
2) A set E is sMd to be measurable in the sense of Carath4cdcry when

(A)=(AE)+I(ACE) holds for all AX.
3) CA denotes the compliment of A: CA=X--A.
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which is independent of the fundamenta finite series {K} (by
Lemma 4).

By (t0 we denote the class of all sets E such that
(0) t,(A)--t(A’,E)+t(ArC) for all A (),

where we can assume (A)+ . We obtain easily"
Theorem 1. It hold the relations () () ()) and

() for every -c. (f.) a. class .
It will be found remarkable that (), in stead o (), plays

a central rSle (C. Theorem 2 and Theorem 7).
2. Lemma 1. Let {K,,} be a fundamental finite series, then

for an arbitrary set AX we have lira (A)= (A).
Proof" Easy. Cf. Halmos" Measure theory, 11, Theorem B.
Lemma 2. If it hold A UTE, (A) (A E) +

(A) (AF) + (ACF) and (AEF) + (ACF)=
(AE) for all i, then it holds" (AF)= 7(AEF).

Proof. (A) (AF)+(AC)7(AEF)+
7,(AECF) :,.(AE)= .(A)+ . Therefore (AF)

Lemma ]. If it holds (UA)= 7=(A)+, where
A,A= 0 (ij), then it holds for any He()

Proof, Put in Lemma 2 A=:A, E=A and F=H.
Lemma 4. If it holds (UT(AK,))= ?=(A,K,) for all

n, w.ere A,A 0 (ij), for a fundamental .finite series
then it holds for any He ’()" .(]7=(AH)) 7:(A.

Proof. By Lemma 3 and Lemma 1.. In the sequel we shall use for simplicity the notation .,(A)
in stead of (AK,). If we prove an equality or ,, then we
shall get the equality for itself (by Lemma 1).

Theorem 2. The class () is -c. a..
Proof. 1 It is clear that, if Ee() then CEe().
2 If Ee() and Ae(), then AEe(). Because"

+.,(C(A E)) (K.). Therefore (K) .,,(A E) + .,,(C(A E)).
3 If E, Fe(), then EFe() and EFe(). Because"

For an arbitrary set A e() such that (A)+ , we have .(A)
--(AC(EF)) ,(AE) + ,(ACE)- ,(AC(EF))
,(AE + (AECF) + (ACE)- (AC(EF)
-(AC(EF)CE) ,(A(E), hence ,.(A) ,(A(E)
+(AC(EF))#(A). Therefore EFe(), and from 1
EFe().

4) cf. the remark at the end of this paper.
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4 If A(), E,F() and EF= 0, then .(A(EF))
=.(AE)+,(AF). Because" Put A(EF) in stead o A in (0).

5 If () and EE 0 (ij), then (UTE)
=7(E). Because" By 4 .x(E) (UE)
hence :(E),’ ’ E’

6 If Ee(.) then U,Ee(). It suffices to prove this only
when EE=O (ij). For any A() ((A)+)we have
(A) (AC
=2,.(AE) (by 4), then (A)-(AC([]7.E))7.(AE)
(A (U,=,)), hence (A) (A (U,E)) +,(A C(UTE)).
Corollar 1. In order that () be -c. a., it is necessary and

sucient that (A) (A B) +(A CB) for all A, B e () ).

4. Let {!} be a family of classes of sets. By () we denote
the smallest finitely additive class of sets containing all and by
[] the smallest completely additive class of sets containing all .

Theorem 3. If is -f. a., then [] is -c. a..

Proof. Let {K} be a undamental finite series. Then

= is -f. a."). Since is an outer measure we can easily prove
that is a measure on , i.e., if Ee, K5E 0 (ij) and
U, ,e9, then .(U G) 7.(E) For an arbitrary set AX,

Ewe define *(A) by *(A)= inf {,.(E) E,
Then [] [{K,}, ] is *-c. a., for every element of [] is

*-measurable in the sense o Carathodoryv, and * coincides with
on 9. It is clear that *(A)(A) or all A. We have only

to show that *(M)=( for Me[O]. Since
.(K,,C*(,M)+*(C *(,) (K,), then we have
*(K,M) (M), and by Lemma 1 *(M)= (M).

Lemma 5. Let 9 and I be -f. a. classes of sets such that
.,,(B) .,,(B M) + .,(B CM) or all n) for all B e I, Me and for
a fundamental finite series {K,,}. Then (, I) is -f. a.

Proof. Let E be an element o (, 2), then there exist a finite

number of elements Be and Me (i=l, 2, ..., k), such that

BB=O (ij), []:B=X and E=U.(MB). Then it holds"

Because Since (), putting in Lemma 2 A=K, E=B, for

lik, E 0 or i and F M (Me), we get"

,.,(MB,) for Me( ) (

5) Cf. [E] Lemma 2.

6) Each element E of ! will be expressed in the forth E=(/’=I (K
-K-a).-,M).-.(CKM,+ I) where K0-- O, M and t(E)m,$.=lt((K--K-I).--M)
+t(CK-M+).

7) Cf. Halmos" Measure theory 12 Theorem A.



630 S. ENOMOTO. [Vol. 27,

And also, putting A=K,,,’,M, E,=B, for 1_i_ k, E,=0 for i> k
and F M, where M, M.22, we get by (1)

( 2 ) /,(M,.-,B)=,(M,",M,",B)+/.,,(Mr’,CMr’,B).
From (1) and (2) we have, putting M=,.,

k k

+..( -e(UM)
Therefore we obtain *), where E= U,(M,B,). Now let it be E
(, 2) (u=l, 2) and E,E=O. Then E can be expressed in the
.orm E=U.(B) (u=l, 2), where

and MM=O. Then by *) and (2), ..(EE:)

Theorem 4. Let and be -e. a. classes of sets. In order
that [, ] be -c. a., it is necessary and sufficient that re(B)
=p.,,(B +p,(BC (for all n) holds for all B , Me and

for a fundamentat finite series {K,} .
Proof. The necessity of the condition is clear. The sufficiency

follows rom Theorem 3 and Lemma 5.
5. Let M={} be the system of all -c. a. classes of sets. M

will be an ordered system in, such a way that",means that,".
Theorem 5. For each M there exists a maximal element 9*

of M such that *.
Proof. Let {x}(2A.) be any linearly or.dered sub-system

M. Then {1} has an upper bound in M. Because- One can
easily prove that (xeaa(x)= xeaaxg, and that eag, is -La.,
hence by Theorem 3 [Wea] is -f.a., which is an upper bound
of {x}. Thus, by Zorn’s Lemma holds Theorem 5.

Theorem 6. The union of all maximal -c. a. classes eM
coincides with () ,9 ()"

Proof. By Theorem 1" U,(). Let A be any element of

8) It is clear that th intersection of an arbitrary number of a-c. a. classes
Ix (2cA) is also /-c. a.. Theorem 4 can be extended as follows "Let x (2cA) be
/-c. a. classes of sets. Then the necessary and sufficient condition that [gx (eA)]
be a-c. a. is that for an arbitrary finite number of 2(0 (i=l, 2 /; k.’_2)
hoIds the relation -1 -1Z,(/,=A,)=Z,(], .A A) + a,(/, =A,"CAD, for all
Aetx(O ".

9) By Theorem 5, Theorem 6 and Theorem 7 holds: "the union of all classes
aeM containing (a) coincides with flt(a)". We can here replace (a) by
(by Theorem 1), Cf. [E] Lemma 3.
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R0*). Then (A, CA)is itself g-c. a.. By Theorem 5 there exists a

maximal !)X* containing (A, CA) Therefore
Theorem 7. The intersection of all maximal -c. a. classes

*9eM coincides with () =()
Proof" Since * * ()] is also9(), then by Theorem 4 ,

*-c. a.. Hence (). Therefore (). Let us assume
that ()(). Let A be any element of ()--(). Then there
exists an A() such that

(**) (A:)(A:A,) +(A:CA,).
By Theorem 4 and Theorem 5 there exists a maximal element

M *0, such that [(), (A:, CA)]. But A by (**)
Therefore" &,X:(). If ()=R(), we have also &,,().

Corollary 2. The necessary and sucient condition that the or-
dered system M be a directed system, is that ()=().

Proof. If there exists only one maximal element * of M,
then by Theorem 6 and Theorem 7 holds" ()=*=(). In
this case M is a directed system. If there exist at least two dif-
ferent maximal elements and of M, then M is not directed.
By Theorem 6 and Theorem 7, we have in this case ()().

6. Remark. There are such eases that ()+() and ()
(), as the following examples show them

Example 1. X consists of 3 points a, b, e ; X= (a, b, c), and is
defined as follows" ((a))=2, ((b))=((c))=3, v((b, c))=((c, a))
=((a, b))=4, ( =6. Then =={0, (a), (b), (c), X}, but
={o,

Example 2. X=(a, b, c), is defined as follows" v.((a))=((b))
=((c)) 2, v.((b, c))= ((c, a))= 3, v((a, b))= 4, ( 5. Then

(a), (b), (b, c), (c, a), X}, but X}.

10) Cf. [E] Remark 3.


