135. On Linear Modulars.

By Sadayuki YAMAMURO.

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1951.)

Let R be a modulared semi-ordered linear space' with a modular m. If R is semi-regular, we can introduce into R two sorts of norms, namely, the first norm ||a|| ($a \in R$) and the second norm ||a||| ($a \in R$), satisfying the condition

 $||| a ||| \le || a || \le 2 ||| a |||$ (a εR).

It is proved that, if m is linear or singular³, then we have (*) ||a|| = |||a||| $(a \in R)$.

In this paper we will prove the converse, that is:

Theorem. If a modulared semi-ordered linear space R with a modular m is semi-regular and the condition (*) is always satisfied, then m is either linear or singular.

Suppose, in the sequel, that the condition (*) is satisfied and we denote the common value by ||a|| ($a \in R$).

Lemma 1. The first norm and the second norm by the conjugate modular \overline{m} of m coincide.

Proof. The first norm by \overline{m} is the conjugate norm of the second norm by m, and the second norm by \overline{m} is the conjugate norm of the first norm by m. Hence our assertion is obtained.

Lemma 2. For a element a such that ||a|| = 1 + m(a), we have m(a) = 0.

Proof. Suppose $m(a) \ge 1$. Then we have $m(a) \ge ||a||$ by the definition of the second norm, contradicting the assumption. Thus we have m(a) < 1, and hence $||a|| \le 1^{3}$. Therefore, from the assumption, we conclude m(a) = 0.

Lemma 3. If there is a simple domestic element a satisfying the condition m(a) = 1, then m is a linear modular on [a]R.

Proof. As a is simple and domestic, we can find a positive element \overline{a} of the conjugate space \overline{R} of R such that

$$\overline{a}(a) = \overline{m}(\overline{a}) + m(a)$$
, and $[\overline{a}]^R = [a]$.

From this relation, we conclude $|| \bar{a} || = \bar{a}(a) = \bar{m}(\bar{a}) + 1$, because, for the first norm $|| \bar{a} ||$ by \bar{m} , we have

$$\| \overline{a} \| = \sup_{m(\varepsilon) \leq 1} | \overline{a}(x) |$$
, and $| \overline{a}(x) | \leq \overline{m}(\overline{a}) + m(x)$ ($x \in \mathbb{R}$)

Thus we obtain $\overline{m}(\overline{a}) = 0$ by the previous lemma.

¹⁾ H. Nakano: Modulared semi-ordered linear spaces. Tokyo Math. Book Series, Vol. I (1950), p. 153.

²⁾ ibid., p. 184.

³⁾ ibid., p. 181.

S. YAMAMURO.

Next we prove that \overline{m} is singular in $[\overline{a}]\overline{R}$. If this is not so, then we can find a number $\alpha > 1$ and a projector $[\overline{p}]$ such that

 $0 < \overline{m} (\alpha[\overline{p}]\overline{a}) \leq 1$.

Putting $\bar{b} = (1 - [\bar{p}]) \bar{a} + \alpha [\bar{p}] \bar{a}$, we have

$$\overline{m}(\overline{b}) = \overline{m} \left(\left(1 - [\overline{p}] \right) \overline{a} \right) + \overline{m} \left(\alpha \left[\overline{p} \right] \overline{a} \right) \leq 1,$$

and hence

$$||a|| = \sup_{\overline{m}(\overline{x}) \leq 1} |\overline{x}(a)| \geq \overline{b}(a).$$

However this relation is impossible, because, by the condition $[\bar{a}]^R = [a]$, we have $[\bar{p}]\bar{a}(a) > 0$, and hence, as $\alpha > 1$,

$$\overline{b}(a) = (1 - [\overline{p}])\overline{a}(a) + \alpha[\overline{p}]\overline{a}(a) > \overline{a}(a) = ||a||.$$

Hence we have proved that \overline{m} is singular in $[\overline{a}]\overline{R}$, that is, m is linear in [a]R.

Proof of the theorem. Let N be the totality of linear elements of R. Then m is linear in [N]R. For an element $x \in (1-[N])R$, $m(x) < +\infty$, we have $m(x) \leq 1$. Because, if there is an element $x \in (1-[N])R$ such that $1 < m(x) < +\infty$, then we can find a number α and a projector [p] such that $m(\alpha[p]x) = 1$ and $\alpha[p]x$ is simple and domestic, and consequently m is linear in [[p]x]R as proved just above. This contradicts the definition of (1-[N])R. Hence, for any $\overline{x} \in \overline{R}(1-[N])$, we have

$$\overline{m}(\overline{x}) = \sup_{x \in \mathbb{R}} \{\overline{x}(x) - m(x)\}$$
$$= \sup_{m(x) \leq 1} \{\overline{x}(x) - m(x)\}$$
$$\leq \sup_{m(x) \leq 1} \overline{x}(x) = || \overline{x} ||,$$

which shows that \overline{m} is finite in $\overline{R}(1-[N])$. Then it is easily seen that \overline{m} is linear in $\overline{R}(1-[N])$, that is, m is singular in (1-[N])R. If $[N]R \neq 0$, $(1-[N])R \neq 0$, then for $x \in [N]R$, $y \in (1-[N])R$ we see easily

||x+y|| = ||x|| + ||y||, $|||x+y||| = Max. \{|||x|||, |||y|||\}$, contradicting the assumption (*). Thus it is proved that

$$[N]R = 0$$
, or $(1-[N])R = 0$.
Hence *m* is linear or singular on *R*.