30. Probability-theoretic Investigations on Inheritance. VII $_{6}$. Non-Paternity Problems.

By Yûsaku Komatu.

Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University. (Comm. by T. Furuhata, m.J.A., Feb. 12, 1952.)
$7{ }^{\text {bis. }}$ Distribution of maximum probability.
We consider the case of mixed combination given by (4.12), i.e.,

$$
\begin{equation*}
P^{\prime}=1-2 S_{2}^{\prime}+S_{3}^{\prime}-2 S_{1,1}^{2}+2 S_{2,2}+3 S_{1,1} S_{1,2}-3 S_{2,3} \tag{7.17}
\end{equation*}
$$

The problem is to maximize this quantity under accessory conditions

$$
\begin{equation*}
0 \leqq p_{i}, p_{i}^{\prime} \quad(i=1, \ldots, m) ; \quad \sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m} p_{i}^{\prime}=1 \tag{7.18}
\end{equation*}
$$

The set of maximizing distributions $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$, if existent interior to the ranges, would be determined by a system of equations

$$
\begin{gathered}
\frac{\partial}{\partial p_{i}}\left(P^{\prime}-\lambda\left(\sum_{j=1}^{m} p_{j}-1\right)-\lambda^{\prime}\left(\sum_{j=1}^{m} p_{j}^{\prime}-1\right)\right)=0 \\
\frac{\partial}{\partial p_{i}^{\prime}}\left(P^{\prime}-\lambda\left(\sum_{j=1}^{m} p_{j}-1\right)-\lambda^{\prime}\left(\sum_{j=1}^{m} p_{j}^{\prime}-1\right)\right)=0 \\
\sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m} p_{i}^{\prime}=1
\end{gathered}
$$

λ and λ^{\prime} denoting the Lagrangean multipliers. The first $2 m$ equations become

$$
\begin{aligned}
& p_{i}^{\prime}\left(-4 S_{1,1}+4 p_{i} p_{i}^{\prime}+3 S_{1,2}+3 p_{i}^{\prime} S_{1,1}-6 p_{i} p_{i}^{\prime 2}\right)=\lambda, \\
& -2 p_{i}^{\prime}+3 p_{i}^{\prime 2}-4 p_{i} S_{1,1}+4 p_{i}^{2} p_{i}^{\prime}+3 p_{i} S_{1,2}+6 p_{i} p_{i}^{\prime} S_{1,1}-9 p_{i}^{2} p_{i}^{\prime 2}=\lambda^{\prime} \\
& (i=1, \ldots, m) .
\end{aligned}
$$

However, as suggested by the previously discussed special case $m=2$, it seems that the maximum of P^{\prime} will rather be attained by an extreme distribution of $\left\{p_{i}\right\}$ lying on the boundary of its range; namely,

$$
\begin{equation*}
p_{i}=1 \quad\left(i=i_{0}\right), \quad p_{i}=0 \quad\left(i \neq i_{0}\right) \tag{7.19}
\end{equation*}
$$

for any value of $i_{0}\left(1 \leqq i_{0} \leqq m\right)$. For such a distribution, P^{\prime} becomes

$$
\begin{equation*}
P_{*}^{\prime}=1-2 S_{2}^{\prime}+S_{3}^{\prime}, \tag{7.20}
\end{equation*}
$$

the value being independent of i_{0}.
The maximum of P_{*}^{\prime} under the condition $\sum p_{i}^{\prime}=1$ is surely attained by the symmetric distribution

$$
\begin{equation*}
p_{i}^{\prime}=1 / m \quad(i=1, \ldots, m) \tag{7.21}
\end{equation*}
$$

In fact, by means of the usual method, the set $\left\{p_{i}^{\prime}\right\}$ maximizing P_{*}^{\prime} is determined by a system of equations

$$
\begin{align*}
0 & =\left(\partial / \partial p_{i}^{\prime}\right)\left(P_{*}^{\prime}-\lambda_{*}^{\prime}\left(\sum_{j=1}^{m} p_{j}^{\prime}-1\right)\right) \\
& =-4 p_{i}^{\prime}+3 p_{i}^{\prime 2}-\lambda_{*}^{\prime} \quad(i=1, \ldots, m), \quad \sum_{i=1}^{m} p_{i}^{\prime}=1
\end{align*}
$$

λ_{*}^{\prime} being a multiplier. The difference of the i th and the j th equations becomes

$$
\left(p_{i}^{\prime}-p_{j}^{\prime}\right)\left(4-3\left(p_{i}^{\prime}+p_{j}^{\prime}\right)\right)=0
$$

Because of the restriction $p_{i}^{\prime}+p_{j}^{\prime} \leq 1(i \neq j)$, we conclude that the relation $p_{i}^{\prime}=p_{j}^{\prime}$ must hold for every pair of i and j. Hence, the maximizing distribution for P_{*}^{\prime} is indeed given by (7.21); the value of the multiplier is then equal to $\lambda_{*}^{\prime}=-(4 m-3) / m^{2}$. Thus, we get

$$
\begin{equation*}
\left(P_{*}^{\prime}\right)^{\max }=1-2 / m+1 / m^{2}=(1-1 / m)^{2} \tag{7.23}
\end{equation*}
$$

It is evident that the right-hand side of the last expression increases with m and tends asymptotically to unity as $m \rightarrow \infty$. Its values are $0.25,0.4444,0.5625,0.64,0.81$ and 0.9801 for $m=2,3,4,5,10$ and 100, respectively.

It seems most likely that the maximum of P_{*}^{\prime} just obtained is simultaneously that of P^{\prime} in (7.17). At any rate it is sure that the inequality holds good:

$$
\begin{equation*}
\left(P^{\prime}\right)^{\max } \geqq\left(P_{*}^{\prime}\right)^{\max }=(1-1 / m)^{2} \tag{7.24}
\end{equation*}
$$

Comparing the both relations (7.24) and (7.14), we get

$$
\left(P^{\prime}\right)^{\max }-(P)^{\text {stat }} \geqq\left(1 / m^{2}\right)(1-1 / m)(2-3 / m)
$$

the right-hand side of which is steadily positive provided $m \geqq 2$. This is quite a reasonable fact. In fact, P^{\prime} reduces to P when the distribution $\left\{p_{i}^{\prime}\right\}$ coincides particularly with $\left\{p_{i}\right\}$. Hence, the degrees of freedom with respect to the variables are greater in case of P^{\prime} than in case of P, what implies immediately the inequality $\left(P^{\prime}\right)^{\max }$ $\geqq(P)^{\max }$.

In case of $A B O$ blood type, the result on maximizing distribution is classical ${ }^{1)}$. In fact, the probability given by (5.3) has to be regarded as a function of two independent variables, e.g., p and q, based upon the identity $r=1-p-q$. Differentiation of thus obtained function

$$
P_{A B O}=p(1-p)^{4}+q(1-q)^{4}+p q(1-p-q)^{2}(2+p+q)
$$

with respect to p and to q leads to the pair of equations

1) Cf., for instance, loc. cit.1) of VII_{4}; or also loc. cit.2) of VII_{4}.

$$
\begin{align*}
0=\partial P_{A B O} / \partial p & =(1-p)^{3}(1-5 p) \\
& +q(1-p-q)\left(2-4 p-q-4 p^{2}-5 p q-q^{2}\right) \tag{7.25}\\
0=\partial P_{A B O} / \partial q & =(1-q)^{3}(1-5 q) \\
& +p(1-p-q)\left(2-p-4 q-p^{2}-5 p q-4 q^{2}\right),
\end{align*}
$$

which yields, together with $r=1-p-q$, the maximizing distribution

$$
\begin{equation*}
p=q=0.2212, \quad r=0.5576 \tag{7.26}
\end{equation*}
$$

The extremal values of p and q coinciding each other are both the root of the quartic equation

$$
\begin{equation*}
25 x^{4}-16 x^{3}+9 x^{2}-6 x+1=0 . \tag{7.27}
\end{equation*}
$$

That this equation possesses a unique root contained in the interval $0<x<1 / 2$ can easily be verified, for instance, by means of the socalled Strum's chain in the theory of algebraic equations; it possesses a root also in the interval $1 / 2<x<1$ which does not satisfy the requirement of maximization.

The maximum of $P_{A B O}$ corresponding to the distribution (7.26) becomes

$$
\begin{equation*}
\left(P_{A B O}\right)^{\max }=0.1999 \tag{7.28}
\end{equation*}
$$

the maximizing distribution of phenotypes being

$$
\begin{equation*}
\bar{O}=0.3109, \quad \bar{A}=\bar{B}=0.2956, \quad \overline{A B}=0.0979 \tag{7.29}
\end{equation*}
$$

Now, the stationary value of P, given in (7.14), becomes in case $m=3$, as already stated, equal to $10 / 27=0.3704$. The value $\left(P_{A B}\right)^{\max }$ in (7.28) is nearly the half of this value. The quantity P expressing the probability in question with the aid of genotypes, this deficiency is no other than caused by the existence of a recessive gene, i.e., O.

We next consider the probability $P_{A B O}^{\prime}$ given in (5.4), concerning the mixed combination. This quantity reducing, for ($p^{\prime}, q^{\prime}, r^{\prime}$) $=(p, q, r)$, just to $P_{A B O}$, its maximum value is never less than the value given in (7.28). Moreover, since, for a particular pair of distributions

$$
\begin{equation*}
p=q=0, \quad r=1 ; \quad p^{\prime}=q^{\prime}=r^{\prime}=1 / 3, \tag{7.30}
\end{equation*}
$$

$P_{A B O}^{\prime}$ becomes equal to $10 / 27$, it is sure that the relation

$$
\begin{equation*}
\left(P_{A B O}^{\prime}\right)^{\max } \geqq 10 / 27=0.3704 \tag{7.31}
\end{equation*}
$$

holds good. The value standing in the right-hand side of the last inequality coincides accidentally with that of $(P)^{\text {stat }}$ in (7.14), for m $=3$, and is nearly the twice of the maximum value of $P_{A B O}$.

In case of $A_{1} A_{2} B O$ blood type, the problem of determining the maximizing distribution will be somewhat troublesome. We omit
here the detailed analysis. As noticed above, the value ($P)^{\text {stat }}$ in (7.14) becomes, in case $m=4$, equal to $129 / 256=0.5039$. Since, in case of $A_{1} A_{2} B O$ blood type, dominance relations are really existent, the maximum value of $P_{A_{1} A_{2} B o}$ will be considerably less than the last mentioned value. But, on the other hand, since this blood type is a sub-division of $A B O$ blood type, the maximum value of $P_{A_{1} A_{2} B o}$ is not less than the value in (7.28). We thus get a rough estimation

$$
\begin{equation*}
0.1919 \leqq\left(P_{A_{1} A_{2} B O}\right)^{\max } \leqq 0.5039 \tag{7.32}
\end{equation*}
$$

We next consider the case of Q blood type. The probability given in (5.5) may be written in the form

$$
\begin{equation*}
P_{Q}=u v^{4}=(1-v) v^{4} . \tag{7.33}
\end{equation*}
$$

The maximizing distribution is determined by means of the equation $0=d P_{Q} / d v=v^{3}(4-5 v)$, whence it follows that P_{Q} is maximized at the distribution

$$
\begin{equation*}
u=1 / 5=0.2, v=4 / 5=0.8 ; \quad \bar{Q}=9 / 25=0.36, \quad \bar{q}=16 / 25=0.64 ; \tag{7.34}
\end{equation*}
$$

the maximum value of the probability being

$$
\begin{equation*}
\left(P_{Q}\right)^{\max }=(1 / 5)(4 / 5)^{4}=256 / 3125=0.0819 \tag{7.35}
\end{equation*}
$$

In mixed case, the probability is given by (5.6), i.e.,

$$
\begin{equation*}
P_{Q}^{\prime}=v^{2} u^{\prime} v^{\prime 2}=v^{2}\left(1-v^{\prime}\right) v^{\prime 2} \tag{7.36}
\end{equation*}
$$

In order that P_{Q}^{\prime} attains its maximum, it is necessary that v is equal to 1 . The quantity P_{Q}^{\prime} then becomes equal to $\left(1-v^{\prime}\right) v^{\prime 2}$. Hence, we get the maximizing distributions and the maximum value:

$$
\begin{align*}
& u=0, \quad v=1 ; \quad u^{\prime}=1 / 3=0.3333, \quad v^{\prime}=2 / 3=0.6667 ; \tag{7.37}\\
& \bar{Q}=0, \quad \bar{q}=1 ; \quad \bar{Q}^{\prime}=5 / 9=0.5556, \quad \bar{q}^{\prime}=4 / 9=0.4444 ; \tag{7.38}\\
& \left(P_{Q}^{\prime}\right)^{\max }=(1 / 3)(2 / 3)^{2}=4 / 27=0.1481 . \tag{7.39}
\end{align*}
$$

In conclusion, we consider the case of $Q q_{ \pm}$blood type. The probabilities given in (5.10) and (5.11) can be written in the respective forms

$$
\begin{align*}
& P_{Q q \pm}=u v^{4}+v_{1} v_{2}^{4}=\left(1-v_{1}-v_{2}\right)\left(v_{1}+v_{2}\right)^{4}+v_{1} v_{2}^{4}, \tag{7.40}\\
& P_{Q q \pm}^{\prime}=v^{2} u^{\prime} v^{\prime 2}+v_{2}^{2} v_{1}^{\prime} v_{2}^{\prime 2}=v^{2}\left(1-v_{1}^{\prime}-v_{2}^{\prime}\right)\left(v_{1}^{\prime}+v_{2}^{\prime}\right)^{2}+v_{2}^{2} v_{1}^{\prime} v_{2}^{\prime 2} . \tag{7.41}
\end{align*}
$$

Differentiation of (7.40), considered as a function of two independent variables v_{1} and v_{2}, with respect to each of them leads to

$$
\begin{equation*}
\left(v_{1}+v_{2}\right)^{3}\left(4-5\left(v_{1}+v_{2}\right)\right)+v_{2}^{4}=\left(v_{1}+v_{2}\right)^{3}\left(4-5\left(v_{1}+v_{2}\right)\right)+4 v_{1} v_{2}^{3}=0 \tag{7.42}
\end{equation*}
$$

the system of equations for determining the maximizing distribution. It can easily be solved. In fact, we get, by subtraction, $v_{2}=4 v_{1}$ whence it follows

$$
\begin{equation*}
125 v_{1}^{3}\left(4-25 v_{1}\right)+256 v_{1}^{4}=0 \tag{7.43}
\end{equation*}
$$

Thus, we get the maximizing distribution for $P_{Q q \pm}$ and the maximum value:
(7.44) $\quad v_{1}=500 / 2869, v_{2}=2000 / 2869 ; v=2500 / 2869, u=369 / 2869 ;$
(7.45) $\quad \bar{Q}=0.2407, \quad \bar{q}_{-}=0.2737, \quad \bar{q}_{+}=0.4856$;

$$
\begin{align*}
\left(P_{Q q \pm}\right)^{\max } & =(369 / 2869)(2500 / 2869)^{4}+(500 / 2869)(2000 / 2869)^{4} \tag{7.46}\\
& =22414062500000000 / 194382520709325349=0.1153 .
\end{align*}
$$

Lastly, the maximum of (7.41) is attained evidently when the extreme distribution $v_{2}=v=1$ does appear. The procability then becomes equal to $\left(1-v_{1}^{\prime}-v_{2}^{\prime}\right)\left(v_{1}^{\prime}+v_{2}^{\prime}\right)^{2}+v_{1}^{\prime} v_{2}^{\prime 2}$, which leads, by differentiation with respect to each of v_{1}^{\prime} and v_{2}^{\prime}, to the system of equations

$$
\begin{equation*}
\left(v_{1}^{\prime}+v_{2}^{\prime}\right)\left(2-3\left(v_{1}^{\prime}+v_{2}^{\prime}\right)\right)+v_{2}^{\prime 2}=\left(v_{1}^{\prime}+v_{2}^{\prime}\right)\left(2-3\left(v_{1}^{\prime}+v_{2}^{\prime}\right)\right)+2 v_{1}^{\prime} v_{2}^{\prime}=0 \tag{7.47}
\end{equation*}
$$

Thus, we get the maximizing distributions for $P_{Q q \pm}^{\prime}$ and the maximum value:

$$
\begin{align*}
& v_{2}=v=1, \quad v_{1}=u=0 ; v_{1}^{\prime}=6 / 23, \quad v_{2}^{\prime}=12 / 23 ; v^{\prime}=18 / 23, \quad u^{\prime}=5 / 23 ; \tag{7.48}\\
& \\
& \bar{Q}=\bar{q}_{-}=0, \quad \bar{q}_{+}=1 ; \quad \bar{Q}^{\prime}=205 / 529=0.3875 \tag{7.49}\\
& \bar{q}_{-}^{\prime}=180 / 529=0.3403, \quad \bar{q}_{+}^{\prime}=144 / 529=0.2722 ; \tag{7.50}\\
& \left(P_{Q q \pm}^{\prime}\right)^{\max }=(5 / 23)(18 / 23)^{2}+(6 / 23)(12 / 23)^{2} \\
& \\
& \quad=2484 / 12167=0.2042 .
\end{align*}
$$

By comparing the results (7.35), (7.39), (7.46) and (7.50), we notice that the relations hold:

$$
\begin{equation*}
\left(P_{Q \pm \pm}^{\prime}\right)^{\max }>\left(P_{Q}^{\prime}\right)^{\max }>\left(P_{Q q \pm}\right)^{\max }>\left(P_{Q}\right)^{\max } \tag{7.51}
\end{equation*}
$$

the equality sign being excluded everywhere, among which the weaker inequalities $\left(P_{Q q \pm}^{\prime}\right)^{\max } \geqq\left(P_{Q}^{\prime}\right)^{\max } \geqq\left(P_{Q}\right)^{\max } \quad$ and $\quad\left(P_{Q q \pm}^{\prime}\right)^{\max }$ $\geqq\left(P_{Q q \pm}\right)^{\max } \geqq\left(P_{Q}\right)^{\max }$ are trivial and could be preassigned without any calculation.

