26. Probability-theoretic Investigations on Inheritance. VIII $_{2}$. Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.
(Comm. by T. Furuhata, m.j.a., Feb. 12, 1952.)

2. General formulae on probabilities of proving non-paternity. We now enter into our main discourse. Let us consider, as usual, an inherited character consisting of m allelomorphic genes $A_{i}(i=1$, \ldots, m) with an equilibrium distribution given by (1.1). Though the case of mixed mother-child combination is rather general, we first treat, as a model, that of pure one; the former will be discussed in a subsequent section.

In general, we denote by

$$
\begin{equation*}
V(i j ; h k) \tag{2.1}
\end{equation*}
$$

the probability of proving non-paternity of a putative father, chosen at random with respect to type, against a given pair of a mother $A_{i j}$ and her child $A_{k k}$. Among such quantities, only those are significant in which h or k coincides with at least one of i and j; otherwise, they may be regarded, according to impossibility of motherchild combinations, as to be equal to unity, but such a convention will become really a matter of indifference in the following lines. Let us again, as in (1.1) of IV, denote by $\pi(i j ; h k)$ the probability of appearing of such a mother-child combination. The probability of the composed event that such a combination arises and then the proof of non-paternity can be established, is thus given by the product

$$
\begin{equation*}
P(i j ; h k)=\pi(i j ; h k) V(i j ; h k) . \tag{2.2}
\end{equation*}
$$

It vanishes unless h or k coincides with at least one of i and j, regardless of the determination of value of (2.1), since then $\pi(i j ; h k)$ so does.

If we sum up the probabilities $P(i j ; h k)$ over all possible types $A_{k \varepsilon}$ of children, then we get the sub-probability of proving nonpaternity against the type $A_{i j}$ of mother, which will be denoted by

$$
\begin{equation*}
P(i j)=\sum_{h, k} P(i j ; h k) . \tag{2.3}
\end{equation*}
$$

The probability of proving non-paternity against a fixed mother of type $A_{i j}$ is then given by

$$
\begin{equation*}
P(i j) / \bar{A}_{i j} . \tag{2.4}
\end{equation*}
$$

If we further sum up the probabilities $P(i j)$ over all types $A_{i j}$ of mothers, we get the whole probability of proving non-paternity which will be denoted by P; i.e.,

$$
\begin{equation*}
P=\sum_{i, j} P(i j)=\sum_{i, 2} P(i, k) \tag{2.5}
\end{equation*}
$$

both summations extending over all possible respective sets of suffices.

In order to determine the value of (2.1) in an explicit form, we begin with the case of mother-child combination $\left(A_{i u} ; A_{i i}\right)$. Then, anyone of a type not containing the gene A_{i}, i.e., of any type among $A_{h k}(h, k \neq i)$ can deny to be a true father. Hence, we obtain

$$
\begin{align*}
& V(i i ; i i)=\sum_{\substack{h \\
h \leq k}} \bar{A}_{n k}=\sum_{\substack{h=1 \\
h \neq i}}^{m} \bar{A}_{h h}+\sum_{\substack{h, k \neq i \\
h<k}} \bar{A}_{h k} \tag{2.6}\\
&=\sum_{n \neq i} p_{h}^{2}+\sum_{\substack{h, k \neq i \\
h<k}} 2 p_{h} p_{k}=\sum_{h, k \neq i} p_{h} p_{k}=\left(1-p_{i}\right)^{2} .
\end{align*}
$$

The same result may also be derived by considering the complementary probability of the event that a type contains at least one gene A_{i}; in fact, we thus get again

$$
V(i i ; i i)=1-\left(p_{i}^{2}+\sum_{n \neq i} 2 p_{i} p_{n}\right)=\left(1-p_{i}\right)^{2}
$$

Next, given a mother-child combination $\left(A_{i i} ; A_{i j}\right)(j \neq i)$, the types $A_{k k}(h, k \neq j)$ are deniable, and hence we obtain

$$
\begin{equation*}
V(i i ; i j)=\sum_{h, k \neq j} p_{h} p_{k}=\left(1-p_{j}\right)^{2} \quad(j \neq i) ; \tag{2.7}
\end{equation*}
$$

the consideration of a complementary probability will, of course, lead also to the same result. In similar manners, we obtain the following results:

$$
\begin{array}{lr}
V(i j ; i i)=\sum_{h, k \neq i} p_{h} p_{k}=\left(1-p_{i}\right)^{2} & (j \neq i), \\
V(i j ; i j)=\sum_{h, k \neq l} p_{h} p_{k}=\left(1-p_{i}-p_{j}\right)^{2} & (j \neq i), \\
V(i j ; i h)=\sum_{k, k \neq h} p_{k} p_{l}=\left(1-p_{h}\right)^{2} & (j, h \neq i ; h \neq j) . \tag{2.10}
\end{array}
$$

The comparison of (2.6) with (2.7) and with (2.8) shows that the last two results remain valid also in case $j=i$. In particular, for a child $A_{i i}$, the probability in question is always equal to $\left(1-p_{i}\right)^{2}$ regardless of the types of mother. Further, as seen from (2.8) and (2.10), the result (2.10) remains valid also for $h=i$. In spite of such reducibilities, we write these probabilities separately, constructing the following table.

Mother Child	$A_{i u}$ $A_{i i}$	$A_{i j}$ $(j \neq i)$
$\left(1-p_{i}\right)^{2}$	$\left(1-p_{j}\right)^{2}$	

Child	$A_{i i}$	$A_{i j}$	$A_{i h}$ $(h \neq i, j)$
$A_{i j}(i \neq j)$	$\left(1-p_{i}\right)^{2}$	$\left(1-p_{i}-p_{j}\right)^{2}$	$\left(1-p_{h}\right)^{2}$

The quantities $\pi(i j ; h k)$ having been already evaluated in $\S 1$ of IV, the sub-probability of proving non-paternity, given in (2.2), against every mother-child combination can immediately be obtained. We get, for instance,

$$
\begin{align*}
& P(i i ; i i)=\pi(i i ; i i) V(i i ; i i)=p_{i}^{3}\left(1-p_{i}\right)^{2}, \tag{2.11}\\
& P(i i ; i j)=\pi(i i ; i j) V(i i ; i j)=p_{i}^{2} p_{j}\left(1-p_{j}\right)^{2} \quad(i \neq j) .
\end{align*}
$$

We now calculate the sub-probabilities defined in (2.3). First, for homozygotic mother $A_{i k}$, we have

$$
\begin{equation*}
P(i i)=P(i i ; i i)+\sum_{j \neq i} P(i i ; i j) . \tag{2.12}
\end{equation*}
$$

In view of the second relation (2.11), we get

$$
\begin{align*}
& \sum_{j \neq i} P(i i ; i j)=p_{i}^{2} \sum_{j \neq i} p_{j}\left(1-p_{j}\right)^{2}=p_{i}^{2}\left(\sum_{j=1}^{m} p_{j}\left(1-p_{j}\right)^{2}-p_{i}\left(1-p_{i}\right)^{2}\right) \tag{2.13}\\
= & p_{i}^{2}\left(1-2 S_{2}+S_{3}-p_{l}\left(1-p_{i}\right)^{2}\right),
\end{align*}
$$

where the notation for power-sum defined in (1.2) has been used. Thus, remembering also the first relation (2.11), we get, for (2.12),

$$
\begin{equation*}
P(i i)=p_{i}^{2}\left(1-2 S_{2}+S_{3}\right) . \tag{2.14}
\end{equation*}
$$

Next, for heterozygotic mother $A_{i j}(i \neq j)$, we have

$$
\begin{align*}
P(i j) & =P(i j ; i i)+P(i j ; j j)+P(i j ; i j) \\
& +\sum_{h \neq i, j}(P(i j ; i h)+P(i j ; j h)) . \tag{2.15}
\end{align*}
$$

From the results on π 's and V 's, we get

$$
\begin{align*}
& P(i j ; i i)+P(i j ; j j)+P(i j ; i j) \\
= & p_{i} p_{j}\left(p_{i}\left(1-p_{i}\right)^{2}+p_{j}\left(1-p_{j}\right)^{2}+\left(p_{i}+p_{j}\right)\left(1-p_{i}-p_{j}\right)^{2}\right), \tag{2.16}\\
& \sum_{k, k \neq i}(P(i j ; i h)+P(i j ; j h))=2 p_{i} p_{j} \sum_{h \neq i, j} p_{h}\left(1-p_{h}\right)^{2} \\
= & 2 p_{i} p_{j}\left(\sum_{h=1}^{m} p_{h}\left(1-p_{h}\right)^{2}-p_{i}\left(1-p_{i}\right)^{2}-p_{j}\left(1-p_{j}\right)^{2}\right) \tag{2.17}\\
= & 2 p_{i} p_{j}\left(1-2 S_{2}+S_{3}-p_{i}\left(1-p_{i}\right)^{2}-p_{j}\left(1-p_{j}\right)^{2}\right),
\end{align*}
$$

whence it follows

$$
\begin{equation*}
P(i j)=p_{i} p_{j}\left(2\left(1-2 S_{2}+S_{3}\right)-4 p_{i} p_{j}+3 p_{i} p_{j}\left(p_{i}+p_{j}\right)\right) \quad(i \neq j) . \tag{2.18}
\end{equation*}
$$

The sub-probabilities having been thus obtained in (2.14) and (2.18), the whole probability will be calculated by means of (2.5). For that purpose, we now introduce a conventional notation defined by

$$
\left\{\begin{array}{l}
P(i i)=[P(i j)]^{p_{j}=p_{i}}, \tag{2.19}\\
P(i j)=P(i j)
\end{array} \quad(j \neq i)\right.
$$

It should be noticed that, in general, $P(i i) \neq P(i i)$, that is to say, $P(i j)(i \neq j)$ does not simply reduce to $P(i i)$, by putting $p_{j}=p_{i}$, as seen from (2.14) and (2.18). Now, making use of the convention
defined in (1.5), we get, in view of general formula given by (1.7),

$$
P=\sum_{i=1}^{m} P(i i)+\sum_{i, j}^{\prime} P(i j)=\sum_{i=1}^{m} P(i i)+\frac{1}{2}\left(\sum_{i, j=1}^{m} P(i j)-\sum_{i=1}^{m} P(i i)\right)
$$

Consequently, we get further, by means of (2.14) and (2.15),

$$
\begin{gathered}
P=S_{2}\left(1-2 S_{2}+S_{3}\right)+\sum_{i, j=1}^{m} p^{i} p_{j}\left(\left(1-2 S_{2}+S_{3}\right)-2 p_{i} p_{j}+\frac{3}{2} p_{i} p_{j}\left(p_{i}+p_{j}\right)\right) \\
\quad-\sum_{i=1}^{m} p_{i}^{2}\left(\left(1-2 S_{2}+S_{3}\right)-2 p_{i}^{2}+3 p_{i}^{3}\right) \\
=S_{2}\left(1-2 S_{2}+S_{3}\right) \\
+1-2 S_{2}+S_{3}-2 S_{2}^{2}+3 S_{2} S_{3} \\
\\
-\left(S_{2}\left(1-2 S_{2}+S_{3}\right)-2 S_{4}+3 S_{5}\right),
\end{gathered}
$$

whence it follows the desired expression for the whole probability, stating that

$$
\begin{equation*}
P=1-2 S_{2}+S_{3}-2 S_{2}^{2}+2 S_{4}+3 S_{2} S_{3}-3 S_{5} \tag{2.20}
\end{equation*}
$$

Cf. also a later paper VIII.

