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17. Note on Dirichlet Series (IX).
Remarks on J. J. Gergen.S. Mandelbrojt’s Theorems,

By Chuji TANAKA.
Mathematical Institute, Waseda University, Tokyo.

(Comm. by Z. SUEUA, M.J.A., Feb. 12, 1952.)

(1) Introduction. Let us put

(1.1) F(s)-aexp(--2s) (s--a-bit, 0_...-- oo).

If (1.1) is simply convergent in the whole plane, then (1.1) defines
an integral tunction. Now we shall begin with

Definition. Leg (1.1) be simply convergeng in the whole plane.
Suppose that (1.1) assumes every value, excepg perhaps two (oo in-
cluded), infinitely many imes, in any angular domain
0[ e, where, so fixed point, e: any positive number. Then arg (s--
So)=O is called Julia’s direction with respect to s. For brevity, we
denote it by J (so 8)-direction.

In the last part of their interesting note ([1] theorems V-VII),
;l. ;l. Gergen-S. YIandelbrojt established the existence of ;l (0")-
directions under some assumptions. In this note, we shall prove the
existence of ;l (so :O)-directions under hypotheses somewhat different
from their ones.
(2) Theorem I. In this section, we shall prove

Theorem I. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point so=ao +ito, there exist
two J (so +_. r/2)-directions, provided that (1.1) is uniformly convergent
for o--a , where a sufficiently small positive constant.

From this theorem immediately 2ollows
Corollary. Let (1.1) be uniformly convergent in the whole plane,

and not be a constant. Then, for "any given point so, there exist two
J(so +__r/2)-directions.

Formerly the author proved this corollary under the absolute
convergence in the whole plane, but recently Prof. A. Wintner kindly
remarked to him that this corollary is valid.

In order to establish theorem 1, we need some lemmas.
Lemma I. (H. Bohr, [2] p. 49) If (1.1) is uniformly convergent

for o__, then to any bsunded domain A interior to this half-plane,
and to any given e(>O), corresponds a sequence of numbers { r} such
that, for any s contained in A we have

F (s + irp)--F (s) I< (p----- +/-1, ___2, ),
where
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lim (r+--rv) >0, |im v lip < + .
Lemma II. Under the hypotheses of Theorem 1, for any given

(0), (1.1) is unbounded in /2 _1 arg (s-so) I-- r[2 + .
Proof. We shall show that, in =/2 arg (s-so) =/2 + e, (1.1) is

unbounded. The unboundedness in -=/2 arg (S-So)

_
-@/2+ e) is

similarly established. It is sufficient to show that the boundedness
in =/2

_
arg (s-so)

_
=/2 + e ascertains the boundedness in the whole

plane, because by Liouville’s well-known theorem, (1.1) reduces to
a constant, which contradicts the hypotheses. For its purpose, it
further suffices to prove the uniform boundedness in the circle C:
s--sol_ R, where R is an arbitrary large number.

Since F (s) is evidently bounded for a0-a a, there exists a
constant K such that

(2.1) F (s) I<K for --/2

_
arg (s--so)

_
7/2 + .

Putting A:[S--So[ r<a, e--s,(>e.>.. >e-0), in Lemma 1, we
can conclude that there exists a sequence {r,} such that

(2.2) F (s +i)--F (s) ( e for s contained in A, where ( r;(
(r(..-+. Setting F (s)=F (s +ir), by (2.2) F (s) tends

uniformly to F (s) in A. On the other hand, for a sufficiently large
n>N(R), we have easily F,(s) (K in C. Hence, by Vitali’s well-
known theorem F. (s) also tends uniformly to F (s) in C, so that we
have evidently IF (s)i(K in C, which is to be proved.

Proof of Theorem I. By Lemma 2, for any given e (>0), F (s)
is unbounded in D (e): =/2_arg (s--so) /2 + e. Hence there exists
evidently a sequence {S} (n--l, 2, ...) such that

(2.3) (i) S D (e), IS! (IS! ([Sl (... (ISt -+ + oo

/(ii) F(S,)I-+ as n-+.

Now let us consider the function-family F (s)--F(So+2(s--so)) in

D: 1/2 [s--sol_l, arg(s-s0)--r/2[

_
e.

By (2.3) we can easily find two sequences {k,} (integers), {s} such
that

(i) S--so+2’(s.-so), s. D,(2.4)
(ii) F(s.)l=iF (S.)! -+ + oo as n-+ + .

On the other hand, on account of the uniform convergence of F (s)
in a0-a

_
a, there exists a constant K such that

(2.5) F (s)! < K for s D, /2_ arg (s--so)

_
/2--.

Then, the function-family {F(s)} is not normal in

D’: l[2--6<IS--Sol<1+3 (>0),
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In fact, by (2.4), (2.5), any partial sequence of {F(s)} neither tends
uniformly to o in D’, nor tends uniformly to a finite analytic func-
tion, so that {F(s)} is not normal in D’. Hence there exists at
least one not-normal point in D’. Thus, in larg(S--So)-=/2 12, F
(s) assumes every value, except perhaps two ( included), infinitely
many times. Since e is arbitrary, arg (s-so)--r/2 is J (so" +z/2)-
direction. By the similar arguments arg(S-So)----r/2 is J(so:-=/2)-
direction.
(3) Theorem II. Here we shall generalize Theorem 1 as follows"

Theorem II. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point So--Oo + ito, there exist
two J (so: +/-r/2)-directions, provided that (1.1) is uniformly bounded
for Oo--a o, where a" suciently small positive constant.

Theorem I immediately iollows rom Theorem 2. For its proof,
we need

Lemma III. In Lemma 1, the uniform convergence of (1.1) for
Oo o can be replaced by the uniform boundedness of (1.1) for Oo o.

Proof. Since A is interior to the half-plane ao, we can
choose a sufficiently small positive constant e’ such that A is con.
rained in ao+e’a. Then, by the well-known theorem ([2] p. 11,
XI), we have

(3.1) F(s)--aexp(--,s) (1--exp(--u))+0(exp (--3u))

uniformly with respect to s contained in A, where k" positive integer,

a0 + e’ a, >0. Hence, we get

(3.2) F(s)--lim a, exp(--s) (1-- exp (--u))

uniformly with respect to s contained in A. On the other hand,
a, exp (--. s) (l--exp [,--u)) is an analytic and almost periodic

function of s, so that by (3.2) and H. Bohr’s theorems, F (s) is also
an analytic and almost periodic function of s in A. Hence, 2rom
the almost-periodicity of F (s) in A, we can conclude the existence
of the sequence of {r} satisfying the same properties as Lemma 1.

q.e.d.
On account of Lemma 3, under the hypotheses o2 Theorem 2,

Lemma 2 is also valid. Hence, by the entirely similar arguments
as Theorem 1, Theorem 2 can be established.
(4) Remark. If we assume only the simple convergence of (1.1)
in the whole plane, then what we can say about the existence o
Julia’s directions ? Concerning this problem, we can prove

Theorem III. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point So, there exists at
least one J (So "O)-direction with O-=i =/2.
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Its proof is trivial: Since (1.1) represents an integral iunction,
there exists at least one Julia’s direction. On the other hand, (1.1)
is uniformly convergent in arg (s--so) a< =/2 ([2] p. 2), so that
(1.1) is evidently uniformly bounded in this angular domain. Hence,
Julia’s direction can not exist in larg(ss)1/2, which is to be
proved.
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