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7bis. Probability against at least one child.

The results on partial sums with respect to (7.2) can also be
obtained in a direct manner by means of the following table con-
cerning the set of deniable types of a man and its probability
(7.1) against each triple.
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We first derive the relations concerning (7.5) which correspond
to (2.6) to (2.10) or (4.13) to (4.17). The results are as follows"

(7.10) J(ii; ii)--,pt(2-2(1 + S)p,-p+3p),

(7.11) J(ii;ih)--ppa(2-2(1 +S)p-p
(7.12) g(ij;ii)-pp(4-4(1 +S,)p-2p(p/ p) /6p+ ptp(p+ 2p)),
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J(ij; ij) pp(4(p, + p)--4(1 + S2)(p + p])-4(1 + 2S2)pp
(7.13) 2(p + p)-5pp(p,+ p)

+ 6(p, + p) + 13p,p(p+ p) + 14pp),

(7.14) J(ij; ih)={ppp(2--2(l +S+p,p)p-p+apl).

Thus, all the possible cases have essentially been worked out.
The results corresponding to (2.11) to (2.15) or (4.18) to (4.22) become
now as follows:

(7.15) Z J(ii; ii)=S-S-S-SS+S,

(7.16) Z Z J(ii; ih)=S--S-Si+S-S S -S+SS-S"

’(J(ij; ii) + J(ij; jj))
(7.17) ’

1

(7.18)
=z-2S-

’ (J(ij; ih) + J(ij; jh))
(7.19)

The sums of (7.15) to (7.16) and of (7.17) to (7.19) are then

(7.20) S(1-S-.S-S+ S),
1(7.21) 1 2S-S-S +2S-SS+S S +S+

respectively. The sum of the last two sub-probabilities yiel the
whole probability of the present non-paternity problem

(7.22) J=I-S-S-S+2S-SS+S

It is a matter of course, as previously noticed, that the last result
coincides just with the one in (7.5).

The corresponding quantity in mixed case becomes

2" ,(7.23) (-- S;S,+7S S,+ 2SS,) +
4-2S7S+

In conclusion, it would be noticed that the non-paternity poof
is never possible at all except the cases deniable against at least one
child, and consequently that the probability of an event that the
non-paternity proof is impossible agait any child is expressed as
the complementary probability of the exceptional cases; namely, it is

equal to 1--J.
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8. Maximizing distributions.

In ,he preceding seetions of this chapter we have derived the
explicit expressions for probabilities of various events. We shall
now determine the distribution of genes which maximizes the res-
pecive probability. As a model, we begin with a concrete example,
MN human blood type, which is regarded as the simplest case, i.e.,
m=2, of the general development.

The whole probability of proving non-paternity against second
child at any rate, i.e., I, coincides quite with the probabilityP
previously given in (5.1) of VIII, and hence may be omitted.

The whole probability against both children is equal to

(8.1) J={st(1 + 2st)(2--3st).

Differentiating this expression by x=st, we get the derivative

dJ/dx--1/2(1 + x-- 9x)=((1--4x)(1 + 5x) + 11x),

which remains always positive in the interval 0x1/4. Hence,
the maximizing distribution is given by

(s.2) s=t=/2; M---N=1/4, MN--I/2
and the maximum value by

(8.3) (J)--15/128=0.1172.
The whole probability against a distinguished child alone is

equal to

(8.4) I-J-----st(2-5st+ 6st).

The derivative of (8.4) with respect to x=st is

d(I-J)/dx--1/2(1 -Sx+ 9x)--((1 4x)(1 --x) + 5x),

which remains also always positive for 0gxl/4. Hence, the
maximizing distribution is again given by (8.2) and the maximum
value by

(s.5) (I J) 9/128-- 0.0703.

Consequently, it is noticed that the relation

(8.6) (IM2-- gzlg)max--- (IllIc)max-(gjv)max

holds good. Namely, the quantity J increases with st, but the
quantity I increases more rapidly so that the difference I--J
attains its maximum for the same distribution (8.2) for which the
maximum of I as well as J is attained.

From the same reason, we conclude that the probabiiity against
at least one child, given by
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(8.7) J=2I--J--1/4st(2--Sst + 2stf),

attains its maximum again for the distribution (8.2); the maximum
value is equal to

(8.8) (Jz)max 33/128 =0.2598.
As a further illustrative example, we consider ABO blood type,

in which a recessive gene appears. The probability J,o in (4.26)
may be regarded, in view of the identity p+q+r=l, as a function
of two independent variables p and q. In order to determine the
maximizing distribution, we differentiate this function with respect
to p and q, obtaining a system of equations O=J,o/p--J,.o/q.
Thus, we get the maximizing distribution

p=q=0.2214, r--0.5572;
(s.9)

O=0.3105, A--B=0.2957, AB--0.0981;

the extremal values of p and q coinciding each other are both a
root, contained in the interval 0< x<l/2, of the quintic equation

(8.10) 348x-610x + 408x-105x + 2=0.
The maximum of J,o is equal to

(8.11) (flAo)max- 0.1250.
For the whole probability against .a distinguished child alone,

i.e.,

(8o12) I,o--J,so=-p(1--p) + }q(1-q)+ pqr(8--5r--7r"),

we get, in a similar manner, the maximizing distribution

(8.13) p=q=0.2206, r=0.5588;

O--0.3123, A=B=0.2952, AB=0.0973;

p and q being a root of the quintic equation

(8.14) 348x-710x + 472x-141x + 24x--2=0.

The maximum of I.o--J..o is equal to

(8.15) (I,z.o JAgo)max--0.0749.
Since equations (8.10) and (8.14) have no root in common, it would
be noticed that an inequality

(8.16) (Io--Jo)max > (Io)max--(Jo)max

must hold in the strict sense, although both sides differ so slightly
that an actual difference is yet invisible at the beginning four
decimal places. (Cf. (7.28)of VII; in fact, Io---Po.)

The whole probability against at least one child, given by
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J,o--2Io--Jo
--p(3--p)(1-p)+ q(3-q)(1-q)+ {pqr(20 9r--7r),

(8.17)

will be maximized by the distribution

p----q-- 0.2210, r---0.5580;
(S.18)

O 0.3113, A--B=0.2955, AB 0.0977;

p and q being a root of the quintic equation

(8.19) 348x --810x + 536x 177x + 48x 6-0.

The maximum o J,o is equal to

(8.20) (J,o)--0.2748.

We notice, by the way, that, more precisely calculated,
inequality must hold:

(8.21) (JABo)max(2Iao--Jazo)max< (IaBo--JABo)max -}- (Iao)max.
We next consider Q blood type. In a similar way as above,

the following results will be obtained.

(8.22) J=-u(1 + u)v;

maximizing distribution and maximum value:

really an

u-(V’33--3)/12----0.2287, v-- (15--/33)/12 0.7713;
(S.23) =(51/a3--57)/72=0.4051, =(129--15V’33)/72=0.5949;
(8.24) (561 /aa 2879)/23 0.0497.

(8.25) I-Jq-uv;
maximizing distribution and maximum value"

(8.26) u=1/6, v=5/(; Q=11/36, q=25/36;

(8.27) (Iq-J)m-5/2.6-o.oa35.

(8.28) gq--.uv(Z/v);

maximizing distribution and maximum value:

u- (17-V’217)/12---0.1891, v-(1/217-5)/12-0.8109;
(S.29) =(5/217-49)/72=0.a424, --(121-51/21---)/72-0.6576;
(s.ao) (J),=(aa517-2oaov27)/2.a=0.149.

Inequalities analogous to (8.16) and (8.21) may be noticed.
If the results on Q blood type are compared with those on MN

blood type, the probabilities in the former are less than the corres-
ponding ones in the latter. The deficiencies are evidently caused
by the existence of a recessive gene.
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In conclusion, we consider the general inherited character with
genes A(lim). The values of whole probabilities being ex-
pressions symmetric with respect t p (1 i m), they will be
stationary ior the symmetric distribution

(8.31) ,---1/m (i-- 1,..., m).

For this distribution, we get

(8.32) (J)stat= m m m

4m -- m ]

(8.34) (J)stat==_ 1-- 4 -m m b
If we differentiate the quantities (8.32), (8.33) and (8.34) with

respect to l/m, regarded as if a continuous variable, we obtain

(8.36)
d( 4 m m+/+

(8.37)
d(l[m) +m+m 46 63.

Thus, (8.35) and (8.37) remain negative for m2. Hence, the
quantities (8.32) and (8.34) increase as m increases, and they tend
asymptotically to the common limit 1 as m. But, (8.36) remai
positive for m 5 while it is negative for m 4
Hence, the quantity (8.33) decreases as m increases provided m 5
and tends to the limit 0 as m .

By the way, the inequalities

(8.38) J I J

are evident, in view of the meanings of the quantities involved.


