58. On the Induced Characters of a Group.

By Masaru Osima.
Department of Mathematics, Okayama University.
(Comm. by Z. Suetuna, m.J.A., May 13, 1952.)

This short note is a preliminary report for the theory of induced characters of a group. The detailed proofs will be given elsewhere. The present study is closely related to the papers Brauer [1] and [3].

1. Let $\left(\mathscr{S}\right.$ be a group of finite order $g=q^{a} g^{\prime}$ where q is a prime number and $\left(g^{\prime}, q\right)=1$ and let \mathfrak{D} be a fixed q-Sylow-subgroup of $(\mathfrak{S}$. Let $C_{1}, C_{2}, \ldots, C_{n}$ be the classes of conjugate elements in (S. Further let $C_{1}, C_{2}, \ldots, C_{n}$ be the classes of conjugate elements which contain the elements in \mathfrak{D}. We denote by $Q_{1}=1, Q_{2}, \ldots$, $Q_{h}\left(Q_{i} \in \mathfrak{Q}\right)$ a complete system of representatives for the classes $C_{i}(i=1,2, \ldots, h)$. Let $g_{i}=g / n_{i}$ be the number of elements in C_{i},
 $n_{i}=q_{i} n_{i}{ }^{\prime}$ where $\left(n_{i}{ }^{\prime}, q\right)=1 . q_{i}$ is called the q-part of n_{i}. Let $\varsigma_{1}, \varsigma_{2}$, \ldots, ς_{n} and $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{m}$ be distinct irreducible characters of \mathscr{G}_{5} and \curvearrowleft. In what follows we shall always take ς_{1} and ϑ_{1} to be the characters of the 1 -representations of \mathscr{S} and $ఇ$. If $\vartheta_{\nu}{ }^{*}$ is the character of $\left(\mathscr{s}\right.$ induced from ϑ_{ν}, then we have the following Frobenius formulas

$$
\begin{cases}\varsigma_{\mu}(Q)=\sum_{\nu} r_{\mu \nu} \vartheta_{\nu}(Q) & (\text { for } Q \text { in } \mathfrak{Q}) \tag{1}\\ \vartheta_{\nu}^{*}(G)=\sum_{\mu} r_{\mu \nu} \varsigma_{\mu}(G) & \text { (for } G \text { in } \mathscr{S})\end{cases}
$$

where

$$
\begin{equation*}
r_{11}=1, \quad r_{1 \nu}=0 \quad(\nu \neq 1) \tag{2}
\end{equation*}
$$

As is well known, the rank of $M=\left(r_{\mu \nu}\right)$ is h. We can prove, by the similar way as in Brauer [3] ${ }^{1}$, the following

Lemma 1. $M=\left(r_{\mu \nu}\right)$ contains a minor of degree h which is not divisible by q.

We set

$$
R_{1}=\left(\begin{array}{cccc}
r_{11} & r_{12} & \ldots & r_{1 h} \\
r_{21} & r_{22} & \ldots & r_{2 h} \\
& \ldots & \ldots & \cdots \\
r_{h 1} & r_{n 2} & \ldots & r_{h h}
\end{array}\right) .
$$

Then we may assume without restriction that

[^0]\[

$$
\begin{equation*}
\left|R_{1}\right| \not \equiv 0 \tag{3}
\end{equation*}
$$

\]

$(\bmod q)$
We set

$$
M=\left(\begin{array}{ll}
R_{1} & R_{3} \tag{4}\\
R_{2} & R_{4}
\end{array}\right)=(R, \quad *), \quad R=\binom{R_{1}}{R_{2}} .
$$

Since the rank of M is h, we have

$$
\begin{equation*}
\binom{R_{3}}{R_{4}}=R B, \tag{5}
\end{equation*}
$$

where

$$
B=\left(\begin{array}{ccccc}
b_{h+1,1} & b_{h+2,1} & \ldots & b_{m, 1} \tag{6}\\
b_{n+1,2} & b_{h+2,2} & \ldots & b_{m, 2} \\
\cdots & \cdots & \cdots & \\
b_{h+1, h} & b_{h+2, h} & \ldots & b_{m, h}
\end{array}\right) .
$$

By (3), we see that the coefficients $b_{h+\kappa, \lambda}$ are the rational numbers whose denominators are prime to q. Further from (2)

$$
\begin{equation*}
b_{h+\kappa, 1}=0 \quad(k=1,2, \ldots, m-h) . \tag{7}
\end{equation*}
$$

Since $M=R(I, B)$, we obtain

$$
\begin{equation*}
\left(\varsigma_{\mu}\left(Q_{i}\right)\right)=R(I, B)\left(\vartheta_{\nu}\left(Q_{i}\right)\right)=R\left(\tilde{\vartheta}_{\lambda}\left(Q_{i}\right)\right), \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\vartheta}_{\lambda}=\vartheta_{\lambda}+\sum_{k=1}^{m-h} b_{h+\kappa, \lambda} \vartheta_{h+\kappa} \quad(\lambda=1,2, \ldots, h) . \tag{9}
\end{equation*}
$$

In particular, (7) yields

$$
\begin{equation*}
\tilde{\vartheta}_{1}=\vartheta_{1} . \tag{10}
\end{equation*}
$$

From (8) we have

$$
\begin{equation*}
\left.\varsigma_{\mu}(Q)=\sum_{\lambda=1}^{n} r_{\mu \lambda} \tilde{\vartheta}_{\lambda}(Q) \quad \text { (for } Q \text { in } \Omega\right) . \tag{11}
\end{equation*}
$$

Lemma 2. If Q and Q^{\prime} in Ω are conjugate in \mathfrak{G}, then $\tilde{\vartheta}_{\lambda}(Q)=$ $\tilde{\vartheta}_{\lambda}\left(Q^{\prime}\right)$.

We obtain the following important
Theorem 1. If $\tilde{\theta}=\left(\tilde{\gamma}_{\lambda}\left(Q_{i}\right)\right)$, then

$$
|\tilde{\Theta}|^{2}=q_{1} q_{2} \ldots q_{k} / v,
$$

where v is a rational integer which is prime to q. We set

$$
\begin{equation*}
Z=\left(\zeta_{\mu}\left(Q_{i}\right)\right), \quad \theta^{*}=\left(\vartheta_{\lambda}^{*}\left(Q_{i}\right)\right), \tag{12}
\end{equation*}
$$

$\mu=1,2, \ldots, n: \lambda, i=1,2, \ldots, h$. Then (1) and (8) yield

$$
\begin{equation*}
\theta^{*}=R^{\prime} Z=R^{\prime} R \tilde{\Theta} \tag{13}
\end{equation*}
$$

If we set $W=R^{\prime} R=\left(w_{\kappa \lambda}\right)$, then $w_{\kappa \lambda}=\sum r_{\mu \kappa} r_{\mu \lambda}=w_{\lambda \kappa}$ and

$$
\begin{equation*}
\vartheta_{\kappa}{ }^{*}(Q)=\sum_{\lambda=1}^{n} w_{\kappa \lambda} \tilde{\vartheta}_{\lambda}(Q) \tag{14}
\end{equation*}
$$

Now we obtain the following theorems.
Theorem 2. $\sum_{\lambda} \vartheta_{\lambda}{ }^{*}\left(Q_{i}\right) \tilde{\vartheta}_{\lambda}\left(Q_{j}{ }^{-1}\right)=n_{i} \delta_{i j}$, where n_{i} is the order of the normalizer $\mathfrak{N}\left(Q_{i}\right)$ of Q_{i} in (5S.

Theorem 3. $\quad \sum_{i} g_{i} \tilde{\vartheta}_{\kappa}^{*}\left(Q_{i}\right) \tilde{\vartheta}_{\lambda}\left(Q_{i}{ }^{-1}\right)=g \delta_{\kappa \lambda}$.
If we take $\lambda=1$, then from (10) we have

$$
\sum_{Q^{*}} \vartheta_{\kappa}^{*}\left(Q^{*}\right)= \begin{cases}g & \text { for } \kappa=1 \tag{15}\\ 0 & \text { for } \kappa \neq 1\end{cases}
$$

where Q^{*} ranges over all elements of \mathfrak{E} whose orders are powers of q.

Since $\left|Z^{\prime} Z\right|=\left|\tilde{\Theta}^{\prime} W \tilde{\Theta}\right|= \pm n_{1} n_{2} \ldots n_{h}$, we have by Theorem 1

$$
|W| \equiv 0 \quad(\bmod q)
$$

We can distribute the irreducible characters ς_{μ} of \mathfrak{F} into blocks with respect to \mathfrak{Q}^{2}. This will be reserved for a subsequent paper.
2. Let $A_{0}=1, A_{1}, A_{2}, \ldots, A_{k}$ be a maximal system of elements of (5) such that A_{i}, A_{j} are not conjugate for $i \neq j$ and the order of each A_{i} is prime to q. Let \mathfrak{N}_{i} be the normalizer of A_{i} in \mathscr{S}_{5} and let \Re_{i} be a q-Sylow-subgroup of \Re_{i}. A full system \sum of elements of $\mathfrak{G S}$ representing the different classes of conjugate elements can be obtained in the following manner: Let $Q_{i, 1}, Q_{i, 2}, \ldots, Q_{i, n(i)}$ $\left(Q_{i, j} \in \mathfrak{D}_{i}\right)$ represent the different classes of conjugate elements in \Re_{i}, in which the orders of the elements are powers of q. Then \sum consists of the elements $A_{i} Q_{i, 1}, A_{i} Q_{i, 2}, \ldots, A_{i} Q_{i, n(i)}$ for $i=0,1,2$, \ldots, k. Let us denote by $n_{i, j}$ the order of the normalizer $\mathfrak{N}\left(A_{i} Q_{i, j}\right)$ of $A_{i} Q_{i, j}$ in \mathfrak{G}. Then the order of the normalizer $\mathfrak{R}\left(Q_{i, j}\right)$ in \Re_{i} is equal to $n_{i, j}$.

We denote by $\vartheta_{i, \nu}(\nu=1,2, \ldots, m(i))$ the irreducible characters of \Re_{i}. Then we obtain by the similar way as in Brauer [2] ${ }^{3)}$

$$
\begin{equation*}
\varsigma_{\mu}\left(A_{i} Q_{i, j}\right)=\sum_{\lambda=1}^{h(i)} r_{\mu \lambda}^{i} \tilde{\vartheta}_{i, \lambda}\left(Q_{i, j}\right) \tag{17}
\end{equation*}
$$

where $r_{\mu \lambda}^{i}$ are algebraic integers and $\tilde{\vartheta}_{i, \lambda}$ have the same significance for \Re_{i} as $\tilde{\vartheta}_{\lambda}$ for \mathfrak{G}. We arrange these numbers $r_{\mu \lambda}^{i}$ for a fixed i in form of a matrix $R^{i}=\left(r_{\mu \lambda}^{i}\right)$ and set

$$
\begin{equation*}
R^{*}=\left(R^{0}, R^{1}, \ldots, R^{k}\right), \quad R^{0}=R \tag{18}
\end{equation*}
$$

According to (17) we have a formula $\left(\varsigma_{\mu}\left(A_{i} Q_{i, j}\right)\right)=R^{*} V$. The matrix V
2) See Osima [5].
3) Cf. Brauer [2] p. 927.
breaks up completely into the matrices $\left(\tilde{y}_{i, \lambda}\left(Q_{i, j}\right)\right)(i=0,1,2, \ldots, k)$. Since $\left(\varsigma_{\mu}\left(A_{i} Q_{i, j}\right)\right.$) is non-singular, so is R^{*}. Let us denote by $q_{i, j}$ the q-part of $n_{i, j}$. Then, by Theorem 1

$$
\begin{equation*}
|V|^{2}=\prod_{i=0}^{k}\left(\prod_{j=1}^{n(i)} q_{i, j} / v_{i}\right) \tag{19}
\end{equation*}
$$

Here $v_{0}=v$ and $\left(v_{i}, q\right)=1$. Hence we obtain

$$
\begin{equation*}
\left|R^{*}\right| \equiv 0 \quad(\bmod \mathfrak{q}) \tag{20}
\end{equation*}
$$

where q is a prime ideal which divides q.
Let $\vartheta_{i, \lambda}^{*}$ be the character of \Re_{i} induced from the irreducible character $\vartheta_{i, \lambda}$ of \mathfrak{D}_{i}. We denote by $\bar{\alpha}$ the number conjugate complex to α. Then, from

$$
\sum_{\mu} \varsigma_{\mu}\left(A_{i} Q_{i, s}\right) \overline{\varsigma_{\mu}\left(A_{j} Q_{j, t}\right)}=n_{i, s} \delta_{i, j} \delta_{s, t},
$$

we can derive

$$
\begin{equation*}
\sum_{\mu} \bar{r}_{\mu \lambda}^{j} \zeta_{\mu}\left(A_{i} Q_{i, s}\right)=\vartheta_{i, \lambda}^{*}\left(Q_{i, s}\right) \delta_{i j} \tag{21}
\end{equation*}
$$

(21) impries

$$
\begin{equation*}
\sum_{\mu} r_{\mu \kappa}^{i} \bar{r}_{\mu \lambda}^{j}=w_{\kappa \lambda}^{i} \delta_{i j} \tag{22}
\end{equation*}
$$

where $w_{\kappa \lambda}^{i}$ have the same significance for \mathfrak{R}_{i} as $w_{\kappa \lambda}$ for (9 .
The group $\mathfrak{K}_{i}=\left\{A_{i}, \mathfrak{Q}_{i}\right\}$ generated by A_{i} and \bigcap_{i} is a direct product : $\mathfrak{S}_{i}=\left\{A_{i}\right\} \times \mathfrak{\unrhd}_{i}$. An irreducible character $\psi_{\rho}^{(i)}$ of \mathfrak{S}_{i} is the product of an irreducible character $\chi_{i, \alpha}$ of $\left\{A_{i}\right\}$ and an irreducible character $\vartheta_{i, \nu}$ of \unrhd_{i} :

$$
\begin{equation*}
\psi_{p}^{(i)}\left(A_{i} Q_{i, j}\right)=\chi_{i, \alpha}\left(A_{i}\right) \vartheta_{i, \nu}\left(Q_{i, j}\right) \tag{23}
\end{equation*}
$$

We denote by $\left(\chi_{i \alpha} \vartheta_{i, \nu}\right)^{*}$ the character of (5) induced from the character $\chi_{i, \alpha} \vartheta_{i, v}$. Let

$$
\begin{equation*}
\varsigma_{\mu}\left(A_{i} Q_{i, j}\right)=\sum_{\nu} \sum_{\alpha} r_{\alpha \mu \nu}^{i} \chi_{i, \alpha}\left(A_{i}\right) \vartheta_{i, \nu}\left(Q_{i, j}\right) . \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\chi_{i, \alpha} \vartheta_{i, \nu}\right)^{*}=\sum_{\mu} r_{\alpha \mu \nu}^{i} \varsigma_{\mu} . \tag{25}
\end{equation*}
$$

We have from (17) and (24)

$$
\begin{equation*}
r_{\mu \lambda}^{i}=\sum_{\alpha} r_{\alpha \mu \lambda}^{i} \chi_{i, \alpha}\left(A_{i}\right) \quad(\lambda=1,2, \ldots, h(i)) \tag{26}
\end{equation*}
$$

From (20) and (26) we can prove directly Theorem 1 in Brauer [3].
3. Above arguments are also applicable to the theory of modular characters of \mathbb{G} for a prime $p \neq q$. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{1}$ be distinct absolutely irreducible modular characters of $\mathfrak{G s}$ and let $\eta_{1}, \eta_{2}, \ldots, \eta_{b}$ be the characters of indecomposable constituents of the regular representation of $\left(\mathscr{S}(\bmod p)\right.$. Let $C_{1}, C_{2}, \ldots, C_{l}$ be the classes of conjugate elements in \mathfrak{G}, in which the orders of the elements are prime to p. We denote by $H_{1}, H_{2}, \ldots, H_{l}$ a complete system of
representatives for the classes $C_{i}(i=1,2, \ldots, l)$. We may assume that $H_{i}=Q_{i}(i=1,2, \ldots, h)$. We have $\left.{ }^{4}\right)$

$$
\left\{\begin{array}{l}
\varphi_{\kappa}\left(Q_{i}\right)=\sum_{\nu=1}^{m} s_{\kappa \nu} \vartheta_{\nu}\left(Q_{i}\right) \tag{27}\\
\vartheta_{\nu}^{*}\left(H_{j}\right)=\sum_{k=1}^{l} s_{\kappa \nu} \eta_{k}\left(H_{j}\right) .
\end{array}\right.
$$

Using (27) we obtain from Theorem 2

$$
\sum_{\kappa=1}^{i} \eta_{\kappa}\left(H_{j}\right)\left(\sum_{\lambda=1}^{n} s_{\kappa \lambda} \tilde{\vartheta}_{\lambda}\left(Q_{i}{ }^{-1}\right)\right)= \begin{cases}n_{i} & \left(\text { for } H_{j}=Q_{i}\right) \tag{28}\\ 0 & \text { (for } \left.H_{j} \neq Q_{i}\right)\end{cases}
$$

On the other hand, we have

$$
\sum_{\kappa=1}^{l} \eta_{\kappa}\left(H_{j}\right) \varphi_{\kappa}\left(Q_{i}{ }^{-1}\right)= \begin{cases}n_{i} & \text { (for } H_{j}=Q_{i} \text {) } \tag{29}\\ 0 & \text { (for } \left.H_{j} \neq Q_{i}\right)\end{cases}
$$

Since $\eta_{1}, \eta_{2}, \ldots, \eta_{l}$ are linearly independent, we have from (28) and (29)

$$
\begin{equation*}
\varphi_{\kappa}\left(Q_{i}\right)=\sum_{\lambda=1}^{n} s_{\kappa \lambda} \tilde{\vartheta}_{\lambda}\left(Q_{i}\right) \tag{30}
\end{equation*}
$$

We denote by $d_{\mu \kappa}$ the decomposition numbers of $\mathfrak{G f}$ for p :

$$
\begin{equation*}
\varsigma_{\mu}\left(H_{j}\right)=\sum_{\kappa} d_{\mu \kappa} \varphi_{\kappa}\left(H_{j}\right) \tag{31}
\end{equation*}
$$

We have from (11), (30), and (31)

$$
\begin{equation*}
r_{\mu \lambda}=\sum_{\kappa} d_{\mu \kappa} s_{\kappa \lambda}, \tag{32}
\end{equation*}
$$

or in matrix form

$$
\begin{equation*}
R=D S \tag{33}
\end{equation*}
$$

where $D=\left(d_{\mu \kappa}\right)$ and $S=\left(s_{\kappa \lambda}\right)$. Let C be the matrix of Cartan invariants of $\mathfrak{C s}$. Since $C=D^{\prime} D$, we obtain

$$
\begin{equation*}
W=R^{\prime} R=S^{\prime} D^{\prime} D S=S^{\prime} C S \tag{34}
\end{equation*}
$$

Let $A_{0}, A_{1}, \ldots, A_{k}$ have the same significance as in §2. Then we may assume that $A_{0}, A_{1}, \ldots, A_{t}$ are a maximal system of elements of $\mathscr{G S}^{5}$ such that A_{i}, A_{j} are not conjugate for $i \neq j$ and the order of each A_{i} is prime to p and q. We obtain by the similar way as in § 2

$$
\begin{equation*}
\varphi_{\kappa}\left(A_{i} Q_{i, j}\right)=\sum_{\lambda=1}^{n(i)} s_{\kappa \lambda}^{i} \tilde{\tilde{\imath}}_{i, \lambda}\left(Q_{i, j}\right), \tag{35}
\end{equation*}
$$

where $s_{\kappa \lambda}^{i}$ are algebraic integers. We set $S^{i}=\left(s_{\kappa \lambda}^{i}\right)$ and

$$
\begin{equation*}
S^{*}=\left(S^{0}, S^{1}, \ldots, S^{t}\right), \quad S^{0}=S \tag{36}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\Phi=\left(\varphi_{\kappa}\left(A_{i} Q_{i j}\right)\right)=S^{*} U \tag{37}
\end{equation*}
$$

[^1]The matrix U breaks up completely into the matrices $\left(\tilde{\vartheta}_{i, \lambda}\left(Q_{i, j}\right)\right)$ ($i=0,1,2, \ldots, t$).
By Theorem 1

$$
\begin{equation*}
|U|^{2}=\prod_{i=0}^{t}\left(\prod_{j=1}^{n(i)} q_{i, j} / v_{i}\right), \quad\left(v_{i}, q\right)=1 \tag{38}
\end{equation*}
$$

Since $|\Phi|^{2}|C|=\Pi\left(\Pi n_{i, j}\right)^{5)}$, we have $\left|S^{*}\right| \equiv 0(\bmod \mathfrak{q})$. Further from (38) we see that $|\stackrel{j}{C}| \neq 0(\bmod q)$. This, combined with $(|\Phi|, p)=1$, yields

Theorem 4. The determinant $\left|c_{\kappa \lambda}(p)\right|$ of the matrix of Cartan invariants of (5S is a power of $p^{6)}$.

References.

[1] R. Brauer : On the Cartan invariants of groups of finite order, Ann. of Math., 42 (1941).
[2] : On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., 42 (1941).
[3] : On Artin's L-series with general group characters, Ann. of Math., 48 (1947).
[4] and C. Nesbitt: On the modular characters of groups, Ann. of Math., 42 (1941).
[5] M. Osima: On the representations of groups of finite order, Math. J. Okayama Univ., 1 (1952).
5) See Brauer and Nesbitt [4].
6) Brauer [1] Theorem 1.

[^0]: 1) We can somewhat simplify Brauer's original proof.
[^1]: 4) See Brauer and Nesbitt [4] § 26 .
