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(Comm. by Z. SUETUNA, M.J.A., July 12, 1952.)

In the previous paper [5], we have extended the notion of the
-operation, introduced by Dixmier [1], to the rings of operators of
the infinite classes. But the statements of the last section of [5]
are not complete, therefore we will precisely discuss them with
some modifications. Especially, we shall clarify the relation between
the finiteness and the E-finiteness of a projection. By the way,
we obtain a functional characterisation of the abelian rings of oper-
ators, which is a generalisation of yon Neumann’s one in separable
cases [3; Theorem 6].

1o Firstly we shall remember some definitions. Let M be a
ring of operators in a Hilbert space H, and denote the center by
//q. A projection P M is called finite if, for any projection Q e
M, P,Q P implies Q=P, and in.finite if this is not the case. If
the unit element I M is finite, hen we say M is of a finite class,
and otherwise M is of an infinite class. As remarked in [5], any
ring of operators M is decomposed into the direct sum of three
rings of operators, M, M, and M, say; M is of the finite class,
M is the one, in which every central projection is infinite but
there exists a finite projection in i, and M is in the other case.
We say M is of the purely infinite class. For a while, we shall
assume that M=M, because, in M, the Dixmier theory is appli-
cable, and in M", our arguments are not available.

By a central envelope of a finite projection E we mean the
central projection Z, which is the least upper bound of FM
equivalent to E. Then there is a system of finite projections E
M, such that each E has no comparable part to others and the
corresponding central envelopes Z span the unit I. Denote E--
(R) E for this system.

Lemma 1.1. Let E be the finite projections in M, which have
no comparable parts to each other, then E= (R)E is also finite.

Proof. The assumption is equivalent to that the corresponding
central envelopes Z are mutually orthogonal. Let Z-- (R) Z, then
Z is obviously the central envelope of E. Any projection F M())
is written in the form: F=(R)F, where F=FZ. Naturally

1) M(z) denotes the set of all A(E)--EA=AE, A M.
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E--EZ. Assume E,,F

_
E, then E,,F E; by the act that

each E is finite, F----E or we have F-E.
Therefore, ff we take the above mentioned E= (R) E, then
Corollary, 1.1. In M, there exists a finite prvjection E M,

such that its central envelope is the unit element I.
We shall call his E the generalised unit element o M, and

in the sequel we discuss M on the basis of this generalised unit E.
Lemma 1.2. Any projection P M can be written in the follow-

ing form with respect to the generalised unit E"

(1) P-- (R) E?(R)F(R)(R)E?(R)F(R)...(R)(R)E,
aA aA

where each member is mutually orthogonal and E" E, E E,
E E (/); F-E and F has no comparable parts with the
remainders.

Proof. As 1--Z, there exists a projection FE such that

PF--O. To this F and P, apply the Theorem 6 o.f [1], then there
exist"

two projections Z M and
three mutually orthogonal projections F1, P1, F, eontained in

Z;
three mutually orthogonal projections F, P, /, contained in

such that FgP1, F.,,P., F-----F (R) F (5 F., and P=P1 P. @P. By
the construction of this decomposition, it is easily seen that F @F
is the maximal part equivalent to P, therefore P E implies =0.
Then we repeat the above decomposition to P (P @ P,). After

some times of repetitions, say A, it may come out that 0.
Then we have P=@E?F@P, where E?E and F has no

EA
comparable part with P, by the construction of the above decom-
position. The Z’ is the central envelope of the EF, EEE,
therefore in this part we can repeat the above argument to the
P, and finally we have P=0 by the transfinite induction. This
completes the proof.

Thus we know that there is a central decomposition o the
unit I corresponding to the expression (1) such that I= Z, and
P is written in the form.

2 P= (R) Z,P, where Z,P- (R) Z,E (R) Z,F,.

Clearly all Z,E-=E are equivalent, and Z,F--F.
In the previous paper, a projection P M is called E-finite if

Z end with ome finite numbers and each A, is also finite. If we
say in the expression (2), a projection P eM is E-finite if there
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exist the central projections Z such that I= (R) Z and PZ can
n()

be written in the orm" PZ-- (R)E, EE, EE.
Moreover we have the iollowing.

Theorem 1. A projection P E M is finite if and only if, in the
expression (2), l end with at most countable numbers, I (R) Z,
and PZ is E-finite

Proof. The necessity depends on the following acts: that,
in Z, PZ--E, EE, and that any projection containing

an infinite projection is also infinite. The sufficiency follows by
Lemma 1.1 and by the act that any E-finite projection is finite.

2. Let E be the generalised unit element of M. We will
now extend he -operation to any E-finite projections. For the
operator A e M(), we have already defined the operation A in [5;
Theorem 1].

Let Q M be a central projection, and let E’--EQ, then Q is
obviously the central envelope of E. For any operator A M(.),
we can define an operation A’ with respect to E’. But we obtain
the iollowing

Lemma 2. 1. For any operator A M(,), A’--A.
Now let a projection E,E, then we can define the operation

or M() by the similar way to M(). But we obtain
Lemma 2. 2. Let the projections P,P, PE, PE, and let

E,E, then P--P.
These emmas ollow easily or directly by [5; Theorem 3]).
By these lemmas, in the expression (1) of an E-finite projec-

tion P given in Lemma 1.2, denote the central envelope of each
E by Q, and put

a ) Pq--N1Q1 + F[ +... +NnQ,+F,
where N--A, then we obtain the opera%ion for any E-finite
projection P. Moreover, we remark that

(4) Pq I (N+n) P

because in M(), E,,E, the -operation is uniformly continuous
(see [5; Theorem 1]).

If an operator A M is contained in some E-finite projection

P, that is, AP=PA--A, then A is called E-finite. Now let the

pectral decomposition of A be IdP, (as be well-known, it is suf-

2) These circumstances will be also discussed in 3.
3) It should be noted here that, in the lemma 2 of [5], E has no inverse

(Eq)- //q(z), but almost everywhere in the sense of 3. But the results of
5 remain true.
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fieient to consider only the self-adjoint A), then A is the uniform

limit of the form" A=i,(P,-P,_)). Clearly every P,-P,,_
is E-finite, therefore A is defined, and

where P is a finite number depending only P. Thus we obtain
the A as the limit of A. Thus defined operation A satisfies all
the conditions required to the -operation; this will be clear by the
argument of [5].

As usual, we say that an operator A e M is finite if and only
if it is contained in some finite projection P e M. Finally we shall
extend the -operation to any finite operator in M. Let a projec-
tion P e M be finite, then as stated in Theorem 1, P is E-finite
any z, where Z,=I, herefore we can define the -opera-

ll

tion in each part M(, by the above arguments, adding them, we

obtain the P. Similarly let A M be finite and be contained in
a finite projection P e M; let the central decomposition concerning
P be Z,. Then in each Z,, A is E-finite, therefore we can define
the A),,. Adding these A,,, we obtain the A. It may be easily

seen that thus obtained A satisfies the all conditions of the -oper-
ation. In this place, it is to be remarked that the above A is
not necessarily in M, but may be an unbounded operator. These
cirmstances will be clarified in the next section.

Summarising the above mentioned and the Dixmier Theorem
of the finite class, we obtain our principal.

Theorem 2. Let M be an arbitrary ring of operators. Then
for any finite operator A M, we can define an operation AA
possessing the following properties

(1) If (a finite) A e , A=A,
(2) (A)=A,
(3) IrA and B be finite, then (A + B)=A +B,
(4a) If AB be finite, then (AB)=(BA),
(4fl) (AC)=AC for any C e ,
(5a) If A be self-adjoint and AO, then A is also self-adjoint

and AO,
(5fl) If A be self-adjoint, AO and A=O, then
( 6 ) (A*)q=(Aq)*.
If A is E-finite then A M.
Furthermore, if there exists another finite projection F such

that its central envelope Z’=I, then we can define another -opera-
tion ’, say; then these operations are related by

4) See [3], Footnote 43) of p. 391.
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A’-=(F)-EA for any finite A e M,
where P denotes the least projection containing E and F.

The latter half is due to [5; Theorem 3].
3. First we consider only the abelian ring o operators, and

denote it simply by M.
As be well-known, M is an abelian B*-algebra, therefore we

can represent M as the set of all continuous functions on the com-
pact Hausdorff space t2 ). But this is also considered as the
Boolean space of he complete Boolean algebra P generated by the
projections of M, ad there exists a one-to-one correspondence
between the Boolean algebra F generated by he open and closed
sets on and the P. If we consider this Boolean algebra F as a
-Boolean algebra, then we can define the measurability o the
functions on tl wih respect to this F). That is, a unction f()
on is called measurable if and only if the set {$ e tl; f($)<c} /,
for every real number c. Moreover, if we denote the set {$
n- 1 <: If()[ < n} by/, then f() is called almost everywhere meas-
urable if and only if, F/ f() is measurable on F for every
integer n, and -- (R) F. Where (R) F denotes he least open

and closed set containing all F.
Then we have the following characterisation of the abelian

rings of operators, which is a generalisa,ion of [3; Theorem 6].
Theorem 3. Let M be an abelian ring of operators. Then M

is characterised by the set of all bounded measurable functions on
the Boolean space

Proof. Let f($) be a bounded measurable functions on 2 with
bound c, and let the set { e 2; f()<} be F /, hen there

corresponds a projection E(2) e M for Fx. Consider 2. < (E(2)

-E(2._)) x, y>for x, y e H, then it is easily seen that ]<(E(2.)
-E(2"_)) x, y> I c. x l. 11Y I- Therefore, by the well-known proc-
ess, we obtain a Lebesgue-Stieltjes integral 12d<E(2)x, y> as the

limit m-c, for any x, ye H, andli2d<E()x, y> I c. I]xl. Yl. Thus
there exists a bounded self-adjoint operator A such that

4 <Ax, y>=i,d<E(,) x,
As M is weakly closed and E(i) M, we have A e M.

The converse is eident by Che spectral decomposition and [2;
Theorem 1].

5) See R. Arens, On a theorem of Gelfand and Neumark, Proc. Nat. Acad.
Sci., 32 (1946), 237-239.

6) Concerning to this notion of the measurability, see P. R. Halmos, Measure
Theory (1950).

7) See [6; Chap. VII].
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Lemma 3. 1. Let f() be an a.e. measurable function on t2, then
there exists a self-adjoint operator A with the dense domain such that

5 ) Ax, y-!dE()x,y
xH, in which il2]’dE(i)x,y) is defined, and for any yeH.for

Moreover, this x is characterised by the fact that x is in the domain
of A.

Poo. This 2ollows easily by he above arguments and by [6;
Chap. VII, 2], so that we omit the proof.

Consider again the general ring oi operaors M. In he ermi-
nology of this section Theorem I can be sated as tollows: A pro-
jection P M is finite if and only if, P is a.e. E-finite in the
central decomposition (2). This saement may be justified by the
next theorem.

Theorem . Let an operator A M be finite, and let A be the
image of A by the -operation defined above, then A can be repre-
sented by the a.e. measurable function on the Boolean space t, cor-
responding to the Boolean algebra P of the projection in I. A is

E-finite if and only if it is a bounded function on
Proo Eviden by Theorem 3, Lemma 3.1, and by he defini-

tion of he -operaion.
Now denote by the set oi all operaors A ; Ms), tha is,

UAU---A or all unitary operators U M’. Then he above the-
orem can be expressed in the following way"

Theorem 5. Let an operator A M be finite, then Aq--M,and
A M if and only if A is E-finite.

Proo5 I is well-known hat A is commutative to a bounded
self-adjoin opera,or B if and only if every resolution of the iden-
tity E() is commutative o B). Because the expression (4) or (5)
can be considered as the spectral decomposition of A q, we obtain
the heorem.
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