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1. Let E be a compact Hausdorff space in which every ope
set has an open closure and / be a regular positive measure on E
such that every set of the first category has null measure. We
call / a normal positive measure and denote its support by S(/),
Where a support of a measure means the complement of the join
of open sets which have null measure. Furthermore, when E has
sufficiently many normal positive measures such that the join of
supports of these measures is dense in E, we call E a hypersonean
space. For detailed explanations for these definitions, we may refer
Dixmier [1].

Let .I be a commutative W*-algebra on a Hilbert space H. In
the following we assume always contains an identity L It is
easy o see that the spectrum of .I (i.e. the space of maximal
ideals of with Stone’s topology) is a hyperstonean space in the
above sense, and conversely a hyperstonean space can be
characterized as such a spectrum (Dixmier [1]).

Furthermore, it has been introduced by J. Dixmier without
proof that the following theorem has been demonstrated by R. Pallu
de la Barrier. As it seems to be useful, we give here two kinds
of its proof and its applications.

2. Theorem JR. Pallu de la Barrier].

Let E be a hyperstonean space and be a commutative W*-
algebra on H whose spectrum coincides with E. Then, for each
normal complex measure r, there exist two elements x, y of H such
that

A()d= Ax, y>(1)
JE

for Ae, where A() denotes the representative function on E of
AEI and , the inner product in H.

Lemma 1. For every hyperstonean space Eo, there exist a

maximal abelian W*-algebra .Io on a Hilbert space Ho whose spectrum
coincides with Eo. For these Ho and 0, the theorem is true.

Proof. The existence of such H0 and 0 are already given by
Dixmier [1]. From this, or each x.eHo, we can define a normal
positive measure Z on E0 such as
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A ()d/,= A for A

We take ou so many such measures (, (/I) on E satisfying
following wo conditions:

(a) Supports of {Z,} are disjoint each other,

(b) Ro=J{S(z,);iI} is dense in E.

Then, denote by (Ro,/) the direct sum of measure spaces {(S(z,),
), ieI}. As (Ro, ) is a localizable space (Segal [6]), L(Ro,/) con-
sidered as the mutiplication algebra on E(Ro, Z) is an maximal
abelian W*-algebra and its spectrum coincides with Eo (Segal [6] and
Dixmier [1]). So every maximal abelian W*-algebra whose spectrum
is homeomorphic to Eo is unitary equivalent to L"(Ro, ).

By Dixmier [1], the total of normal measures on Eo is isomorphic
to L(Ro,/) as a Banach space, so, for each normal measure r on Eo,
there exists a f(r)eL(Ro, 10 such as

r(A)---- A’(r)f(r)d/
J R

for A eI0, where A’(r) is the following function A’(r)- A (y) on
Ro.

Define (), (;) as follows

o if If (r) o,
(r)

o lf (r)l=O,

then, ()eL(Ro, ), (T)eL(Ro, ) and

I A’(T)(T)(T---)d/= < Ax, y>r(A)= ,
where x=U, y--U, U is an unitary transformation which defines
the unitary equivalence between L(Ro, ) and 0. q.e.d.

Lemma 2. Let be a weakly closed subalgebra of a commuta-
tive W*-algebra Io on H and E, Eo be spectrums of 2, o respectively.

Then E can be considered as the continuous image of Eo by a map-

ping 6. Each xH, as in lemma 1, defines normal measures ,
on E, Eo respectively and the relation between their supports is given

by 0-1. Z(,)DZ(l).
Proof. The existence of the mapping O is well known.
Let P be the projection in I represented by the characteristic

function of the open and closed set E-S(,.) in E, then the same

projection P, considered as an openator in to, is represented in C(Eo)
as the characteristic function of Eo- 0--S(,)- So

I(Eo- 0-I. Z(,)) <Px, x> (E-S()) --0.
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Therefore, O-. S(,.)S(I) q.e.d.

In the following, for a function f(w) on E, f*(r)denotes a
function on Eo defined by f*(r)=f(w), where

Lemma 3. For f(w)eD(S(,), ),

I f()d=If*()dz.
Proof. Let F be an open-and-closed set in S(,), then F and

8-.F denote a same projection P in . Let {F} be the total
amily of open-and-closed sets in S(,), then {F}, {O--F} and {P}
are isomorphic each other as comNete Boolean algebras. Further-
more, let PeSo be the projectiqn represented by the characteristic
unction on S(), then the correspondence PP.P gives an
isomorphism between comNete Boolean algebras {P} and (P.P}.
For if PP,-PP,=O, P,P{P} then

O= P(P+P--2PP)x,x (P+P-2PP)x,x
(P- PP)x, x + (P-PP)x, x

So P=PP=P. Moreover, as PPx,x=Px,x,
,(F) (--FS()).

.So the lemma is clear.
First proof of theorem. Let o be a maximal abelian W*-

algebra which contains . We take out such xeH(iD that the
corresponding measures {,} in E satisfy (a), (b) in Lemma 1. Then,
by lemma 2, the supports of normal measures in E0 are disjoint
and U {S(0, ieI} is not always dense in Eo, so we adjoin {yeH, jeJ}
o satisfy the density condition (b) in E0. Put

and (Ro, ) be the direct sum of measure spaces (S(), ), (S(),
) (ieI, jJ). Then 0 is unitary equivalent to the multiplication
algebra L(Ro, ) and the total family of normal measures on Eo is
isomorphic to D(Ro, ).

Now, let (R, ,) be the direct sum of measure spaces (S(,), ,.)
(ieD and r be a general normal measure on E, then by lemma 3,
here exists a f()eU(R, ) such that

r(A) A()dr =,A’()f()d= *’() f*"()d,

where denotes the contraction of a function to the support of
the considering measure and

on R0-US(,).
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Clearly f*"eL(Ro, [), so it defines a normal measure Eo, then, by
lemma 1, there exist x, yeH such as

A*’()f*"()d/--- < Ax, y
R

for Ae. So r(A)=< Ax, y> q.e.d.
Corollary 1.1. For each normal positive measure r on E, there

exists an element x of H such as

A()dr- x>Ax,

for A.
Proof. If r is positive, by the Radon-Nikodym theorem, we can,

take f():>0 in the above proof. So, in this case, ()--() in
Lemma 1. From this the desired conclusion is easily obtained.

3. In this section, we give a simple alternative proof of the
theorem from the stand point of functional analysis.

Second proof of theorem. Let 0, Eo be same as in the first
proof. Then, from Lemma 1, each normal measure / on Eo is
given by (1) as follows:

IoA(w)d/--Ax’ Y"
Let r be the normal measure on E defined by

A x, y>(y)dr-- A

for A eI, then the mapping defined by =(/)-r is a continuous
linear operator from M (the total of normal measures on Eo) to N
(the total of normal measures on E). If we can conclude 2V----=(M),
the proof is finished.

Let C(Eo), C(Eo) be the Banach space of all continuous complex
valued unctions on E, E0 respectively, then by Dixmier [1], C(E),
C(Eo) is the conjugate space of N and M respectively. The con-
jugate mapping =* defined on C(E) to C(Eo)is nothing but the
embedding of I into I0. This embedding is, of course, one-to-one
and norm preserving, so it has a continuous inverse mapping. Then,
by Banach’s well known theorem, N-=(M). q.e.d.

4. Applications.
1. We get the following theorem. The terminology is due to

Dye [2] and Nakamura--Takeda [4].
Theorem 2. Let I be finite W*-algebra on a separable Hilbert

space H (or a a-finite finite W*.algebra). For a trace r on I, follow-
ing conditions are equivalent,

.i) r is strongly sequentially continuous,
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ii) r is countably additive,
iii) the measure on the spectrum t2 of -determined by r is

normal,
iv) there exists xHsuch as r(A)=r(A)= Ax,x) for Ae.
Proof. i)--ii) Let P--P, pe be mutually disjoint projec-

tions, then { p} converges to P strongly. So, r(P0
ii)-+ii). If the measure determined by r is not normal, there

exist a set F of the first category with positive measure. From
the conditions about I, there exist mutually disjoint open-and-closed
sets in 2-F at most countably. So there exists a sequence
central projections {P} whose terms are mutually orthogonal,

I=P and r(/)=r(PO. Ths contradicts to the countable ad=
’=I I=I

ditivity of r.

iii)-iv). Clear by theorem 1 and Corollary 1.1.
iv)-. i). Let {A,} be a sequence in I which converges to A

strongly. Then A,]] is bounded, so {A} converges o A strong-
ly. Since

r(A- A)=r(A- A)= <(A- A)x, x> 11 (A- A)x I1"11 x --0,

r is strongly sequentially continuous.
2. The essential part of Theorem 5 in Segal [5] is obtained

without multiplicity theory.
Theorem 3 [I. E. Segal]. For a commutative W*-algebra

there exists a maximal abelian W*-algebra which is algebraically

isomorphic and weakly bicontinuous to

Proof. Let E be the spectrum of , then is isomorphic to
C(E) as a C*-algebra and, from the proof of theorem 1, L"(R,
is a maximal abelian W*-algebra on L(R, v) whose spectrum coincides
with E, then L(R, v) is isomorphic to C(E), also. We denote these

isomorphism , respectively. Let U(Ao x,,
be a weak neighborhood of A0 and r, be a normal measure on

E defined by r(A) < Axe, y> Because C(E) is the conjugate

space of the Banach space consisting of all normal measures on E,

V(A; r(i=l, 2, -.-, n);) {A " Ir(A- A)I <i=1, 2, .--, n}

is a weak*-neighborhood of A in the Banach space C(E). Clearly,

(2) V(A; r; )={A AeU(Ao;x, y; )}

By theorem 1, for any weak*-neighborhood oi C(E), there

exists a weak neighborhood of the operator algebra which

satisfies (2). Therefore, is bicontinuous with respect to the weak
topology of the operato algebra and the weak*-topology of the
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Banach space C(E).
Alike, ( is bicontinuous with respect to the weak topology of

the operator algebra L(R, ) and the weak*-topology of the Banach
spaee C(E), so (-V s analgebraic isomorphism and s bicontinuous
with respect to weak topologies of each operator algebra.

Corollary 3.1. Let be a commutative AW*-algebra [3] con-
sidered as an operator algebra on a Hilbert space H. If the measure

defined by (A)= Ax,y is always normal, then I is weakly
closed as an operator algebra.

Proof. If the assumption is satisfied,, the spectrum o a com-
mutative AW*-algebra s hyperstonean. Then by the same
,reasoning as above, we get a maximal abelian W*-algebra t which
is isomorphic to J and bicontinuous with respect to weak topologies.
We denote this isomorphism by .

Let B be a weak limit of a directed set {A} in , then {A}
converges to A’e) weakly and there exists such Ae as A----- A’.
Clearly B- A, .so the operator algebra is weakly closed.

Remark. J. Dixmier [1] discussed the existence o a non-
hyperstonean Boolean space o a complete Boolean algebra. Let E
be such aspace, then C(E) gives an example o an AW*-algebra
for which any representation as an operator algebra is not weakly
closed.

In conclusion the author wants to express his warmest thanks
to Prof. Masahiro Nakamura or many valuable suggestions and his
criticism.
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