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1. Introduction

In a previous paper, we have discussed the influence of the
fluctuation of the delay time on the spectral density of the stationary
random process. The obtained result has the simple form and will be
useful for the practical purpose. However, the standard deviation
will not be determined exactly, in the simultaneous observation in both
time and frequency axes. If we consider the measurement in the
frequency axis, it is concluded that fluctuation of the delay frequency
influences on the energy density. Combining these two explicit
results, we can define the quantity H which resembles, in some
sense, the entropy of the discrete information theory, or the
Hamiltonian of the harmonic oscillator in quantum mechanics. H
has the half integer value when the expected value is considered
in phase space. This expected value denotes how many elementary
pulses this wave packet has. The difference between the simul-
taneous observation and the partial observation is discussed, and
this discrepancy is seemed to be just the same as that between
quantum mechanics and classical mechanics.

2. Gauss Transformation and the Frequency
Autocorrelation Function

The result (2.8) in a previous paper is easily obtained by
the Gauss transformation. If we assume the ergodic property, we
have

*(r)--E.f( / r / S)f(t) }.
Ex .Es= .f( / . + x)f (g) } }. (2. 1)

When the fluctuation of the delay time z follows the Gauss dis-

tribution where the mean value is zero and standard deviation is ,
(2.1) turns to be

e*(’) _( + x) /2--o: e-0- d$. (2. 2)

Fourier transform of (2.2) is

(2.3)
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Thus we have obtained the same result as that in the previous
paper ).

The frequency autocorrelation function is defined as

lim[ A,(u + o,)Au)du.G(o) (2. 4)

This function was used by Woodward) for the discussion of the
uncertainty relation in the measurement of the wave packet. How-
ever, he used the normalized aad quadratically integ.rable function;
but (2.4) is given more generally for the stationary random function.
If we also use the- Gauss transformation for the frequency auto-
correlation function, we have

22
*() ()- (2. 5)

’ is the standard deviation of the fluctuation of the delay fre-
quencies, and (t) is defined by

1 : ()e,d (2.6)(t)- V
where ](o)=(). Note that @(t) satisfies the next relation-: l(t)[ dt lim j: [f(t) dt average power.

r. 2T r

(2.5) has the following physical meaning" If we know the frequency
autocorrelation function G(o), the value of ](t)l: in any time is
perfectly determined by

I(t)l
2

However, he fluctuation in he measuremen of the frequency
hinders the exact prediction in the future or in he pas.

3. The Simultaneous Observation

If we put

x(,) +*()i -o’’--- e (3.1)

.*() .*()./ -0
Y()

(ro) (,o)
e (3.2)

where () is the Fourier transform of (t).
We have treated the case where the measurements of the time

and the frequency were independent in 2. There is an interest-
ing case where the both measurements are tried simultaneously.

Then, the following relation will issue
a 1 (3.3)

because of the property of the Gauss distribution. In this case,
it is proved that
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x(t).y() has the Gaussian wave torms in time and frequency axes
respectively. This is considered as the smallest elementary pulse
which we can observe in he simultaneous observation, and the
relation (3.4) denotes hat this elementary pulse occupies he area
2 in the phase space. Then, he quantity,

H log x(t) y() log (t)()
*(t)*()

is defined. H may be considered as a sort of measure of the dis-
crepancy between the true value and the observed value. If H is
constant, (3.5) may be written as

2 Cz 2 Cz’
This is the equation of the ellipse of which area is

S 2’C 2C.
Consequently, C is the number of elementary pulses which are
contained in this area S.

Now we define the effective time duration T and the effective
bandwidth W by

()d
T= W:=

where the mean values are chosen as zero respectively. By the
relation

H may be considered as the number of the elementary pulses
contained in this wave packet in question, if the next condition is
satisfied"

T W (a. 6)

Of course, as we are concerned only with the area of the elementary
pulse, it may be assumed that the relation (3.6)is satisfied by
choosing the form of the elementary pulse similar to that of the
observed wave packet. The relation (3.6) is the same as the result
which was obtained by Woodward. However, the Heisenberg’s
uncertainty relation with respect to the elementary pulse is con-
served in this case, while it breaks down in Woodward’s theory.

Then we consider how to minimize the product W.T, or, what
a wave packet has the minimum number of the elementary pulses
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when the average power of the time series is kept constant. This
problem is reduced to a variational principle to minimize the fol-
lowing quantity,

where is the Lagrange’s multiplier.
If the function (t) which satisfies L-=O is chosen, we have

1

Therefore, is the expected value of H, just as the quantum
mechanical operator has its eigenvalue.

From the relations
l l’(t)e_o,dtdP()()=/2- doo /2-( (- t") (t) e-’ dt

we have

t(t) 1___I d:P() e,do.
/2 7r da,

Remembering these relations, it follows that

2o d

2e. d
+ 2a P()d

Under the condition

I
_

I@(t)l:dt=I

_
(’)1 d cnst- P,

it becomes

L O PI_ ()( 1 d )2a d - ()d.

The function () which minimizes L, satisfies the following dif-
ferential equation.

d() +(2_d,, -,, (,) O. (8.7)

.By this equation, we have

(2 n + 1)2r",
"
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or
1 (n 0,1,2 .) (8.8)=n+- ,..

The eigenfunction is given by

r() (- ) e--z- H, ().
Although the eigenfunction P()implies the unknown parameter
the eigenvalue (3.8) does not contain it. The equation 8.7) is the
wave equation of the harmonic oscillator in quantum mechanics, and
therefore, the condition (3.6) corresponds to the law of equipartiton
of the energy in the theory of the harmonic oscillator when t and

are respectively replaced by momentum p and position q of the
particle; a and (1/e) by mass m and angular frequency ,,. As
H has the integral expected value except the additive constant
it formally corresponds to the entropy in the discrete information
theory. However, the concept of this H is based on the elementary
pulse in which one can code only one information.

In a previous paper, we have obtained the limiting case
of Wiener’s prediction theory by the minimum principle of the
entropy of the error function. The method which has been ex-
pounded in this paper leads us to an interesting result when being
applied to the partial observation. The "partial entropy" H. is
defined by

H og y() og () log *().
The variational principle which minimizes H under the condition

(w)d P

requires the usual classical equation for the harmonic oscillator

he solution of this equation gives

where real ax satisfies

Consequently, a is permitted to take a whatever value while a, is
determined by ff. We may understand that simultaneous obser-
vation corresponds to quantum mechanics and partial observation
does to classical mechanics of the harmonic oscillator, and the
previous method subjects to the partial observation and Wiener’s
R.M.S. method to the simultaneous one in some sense.

4. Conclusions

Althogh the formalism seems to be succeeded in, some problems
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will be left unsolved. The factorization of the spectral density
e(o) into I(o)i does not give the unique result. If we employ
the method of the Wiener’s prediction theory, (o) is an analytic
function in the upper half plane in the complex frequency space,
and k(t) vanishes when t is negative. Of course, as we have the
same Hermite differential equation with respect to @(t), it ranges
from oo to + o, and does not satisfy this condition. To introduce
this condition in our theory, it will be necessary to take into account
the Wiener-Paley’s condition

1+
in h variational principle. I-Iowvr, h rlaion (8.6) will not
be conserved, because perhaps an other differential equation will
appear. Then we shall be obliged to change the expression of H,
even if its proper meaning would not be altered >.
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