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71. Topology of Standard Path Spaces
and Homotopy Theory. I

By Hirosi TODA
Department of Mathematics, Osaka City University

(Comm. by Z. SUETUCA, M.J.A., July 13, 1953)

This is the first of a series of notes, whose aim is to clarify
the homological structure of the path space 2(X,A)={f" I’X
If(0) =., f(1)A} by means of "standard path space" and to inves-
tigate the homotopical structure of spaces. The paper of J-P.
Serre based on the singular homology theory of fibre spaces shows
how the loop space .c2(X)= 2(X, .) is applied to the calculation of
the Hurewicz homotopy groups r(X) of X.

It was proved by J.B. Giever that to every space X there
exists a CW-complex P(X) and a map of P(X)into X inducing
isomorphisms of the homotopy groups of P(X)onto those of X. A
problem to determine the homological structures of P(2(X)) from
those of P(X) is closely related with Serre’s theory. For the simply
connected space X, this problem can be solved by selecting complexes
K(X) and o(K(X)), so-called a standard complex and a standard
path complex respectively, when the complex (K(X)) is combi-
natorially constructed from K(X).

Here we give definitions of standard spaces and standard paths
in them. The set of standard paths in a standard complex K,
whose end points are in a subcomplex L of K, forms a closed subset
o(K, L) of 2(K, L). The standard path space o(K, L) is a CW-complex
and is constructed from K and L by a combinatiorial method.

The fundamental result in this note is roughly stated as follows;
the injection (K, L)-->9(K, L) induces isomorphisms of homotopy and
homology groups of (K, L) onto those of 2(K, L).

Our theory is applied to determine the orders of homotopy
groups r(S’) of n-sphere S for p_.n + 8.
1. Standard Paths in a Suspended Space. Let E(X) be a suspended

space of a space X, which is obtained from X I by shrinking
a subset IX to a single point., and let d" XIE(X) be
its shrinking map. Assume that a real function of X is given
such that p is positive excepting p (.)=0. Then define a standard
path l(x,..., x,, y, t)" IE(X) by a formula

(A) l(xl x y, t) (s)
Id(y, (s s,,)/p(y)) s,__s 1,

wherex, eX, yeA<x, te/,so=0 and
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for i 1, ..., n. The path t(x, ..., x y, t) starts at the base point
and ends at a point d(y, t) of E(A)--d(A 1). The set of paths

l(x,..., x..; y, t) forms a closed subset (E(X), E(A)) of the path
space 2(E(X), E(A)), called a standard path space of the pair (E(X),
E(A)). Denot.e a loop l(x,..., x; ,, 0) by /(x, ..., x,) and denote
the set (E(X), .) of standard loops by (E(X)). Let (X) be an
n-fold product of X, identify (X)’*- to (XF-.<(X)" and set
(X) =(X)% Then the space o(E(X), E(A)) is obtained from (X)"
A I by the following identifications"
(x,...,; y, 0)(x,...,x,_; x,, 1)---(x, ..., x,;,,t) and

(x,, ..., x,; y, t)-(x, ..., x,_, x/, ..., ,; y, t) if x.=..
Specially, the space X is naturally imbedded into (E(X), E(A))

by a correspondence" xol(x).
A pair (X, A) is said to have a homotopy extension property if

X (0)A I is a deformation retract of XL Then our primary
result is

Theorem I. If (X, A) and (A, .) have the homotopy extension
property and if X is arcwise connected and (X, A)is 1-connected, then
the injection homomorphisms of homoto2y groups i.: r((E(X)))
r(/2(E(X))) and i,: r((E(X), E(A)))-->r(2(E(X), E(A))) are all
isomorphisms).

For a map f" (Y, y.) ((E(X)), /(.)) we define a suspension
Ef" E(Y) E(X) of X by setting Ef(d(y, t))=f(y)(t). If Y is a finite
polyhedron, the homotopy classes of f and Ef correspond one-to-one.
Since the set of all classes of Ef coincides to the fundamental
group of a function space E(X):={g" Y->E(X)ig(y.)=.}, the
homotopy classes of f form a group. This group is a generali-
zation of the cohomotopy groups of E. Spanier ). We mention the fact
that there are suspension isomorphisms

’((E(X)) , r/(E(X))
.((E(X), E(A)) r/(E(X), E(A)),

and .(ro(E(X)), X) r/(E(X) X/, X_),
1 1]), ._ d(X [0, ]) andwhere X d(X x

r.(E(X) X+, X_) is the homotopy groups of triad ).. Dfiaition of Standard Paths. In this se.ction we define a
standard complex "K=E(Ko f E f., E,,) and standard paths
in K inductively. For n=0, K is the suspended space E(Ko) of a
CW-complex Ko and the standard path in it was already defined in
1 by the formula (A) with respect to the function of Ko..Define

a real function of (K) by po(l(x,..., x,,J)---g(x)+.--+ p(x,).
Suppose the standard complex "-K, the space ,("-K) of the stand-
ard loops in "-K and a real function

_
of ( K) are already
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defined such that -K is a CW-complex and p_ is positive except-
ing p_(/(.))=0. Let f be a map of (S, s.) into ((-K), /(.)),
where S-L/S’: is the sum of n-spheres S: (n 1) having a single
point s. in common. Define a map F" E(S)-Kby setting F
(d(y, t))=f(y)(t), where E(S)==L/S:TM is the suspended space of S
and d" SI-->E(S) is its shrinking map. Then the standard
complex "K-=-K=(-.L/:+) is obtained from K attaching the
(n+2)-cells e:+ by FIS+. Let o("-K)e(e--h/e+) be a
complex obtained from o(E’-K) attaching the (n+ 1)-cells e by

s, then there exists a map
d" ((’-K) ) I

such that d(1, t) l(t) for e (’-K), d.,(((-K) e) /:) and

d is homeomorphic elsewhere. The function _. of (-K) is

extendable to whole of e positively excepting p_ (/(.)) 0. A
standard path

l(x,..., x,; y, t)" IK
is defined for x, y e (-K)e and t e I by the formula (A), replac-
ing the operations d and by d and

_
respectively. The space

of all standard loops l(x, ..., x,,)- l(x, ..., x., ;., 0) will be denoted
by (K) 2(K). Finally we define a real function g of o(K)

by p(l(xl, ..., x,,))= p_l(x)
In general, standard complex K--- E(Ko f e f e, ...)

is a CW-complex defined by K L/JK. Since a correspondence xl(x)
(x (-K)) is an imbedding of o(-K) into o(K), we may define

a space (K) of standard loops in K by o(K)---L/(K). Let L be

a subcomplex of K, then L is represented by a form F,(Lo;f;,
f;,,, e,,; ...) where e----e,: Y L andf =file,’-. The set of all paths

l(x, ..., x, ;y, t), for x,e o("-K)ve, y e (-L)ve; and t e I, forms
a colsed subset o("K, "*L) of I2(K, L) where L-LFK. Let us
define a space of standard paths (K, L) by L/(K, "L). Then the
space (K, L) is constructed from K and L combinatorially as
follows, and this space becomes a CW-complex. Define a continuous
map

v o(.K) o(K, L) --> o(K, L)
by v(/(x)),/’(x’, t))=lVl’(x; x’, t) for paths x, x’ of K (m; sufficiently
large). Then v(o("K) x ,("K)) o(K),/v/(.) =l(.)Vl=l and lV(l’Vl’’)
=(lVl)Vl, and this implies the simplicity of o(K) and (2(K), o(K)).
Considering a correspondence" (x ..., ... y, t)--)l(x, ..., x.. y, t),
we have that the standard path space (’K, L) is constructed from

(o(-K)ve) (o(-L)e) I by the following identifications;

(xl, ..., x., y, O) (xl, x_ x, 1) (x, x, ;., t),
(x,’-’, ,x,; y, t) (Xl,’", x._, ,+,..., x,; y, t) if x -----.,



302 H. TOD) [Vol. 29,

(x,..., x..; y, t):--(x,..., x_, xvx, x+,..., x; y, t)
if x, x+ (’-K) and

(x, ..., x,, y, t) (x, ..., x_ x,Vl(y, t))
if x, y (’-K). This identifications offer us a cellular decomposi-
tion of (’K, "L) and a fortiori that of (K, L). Cells of (K, L)
are represented by finite sequences (a, ..., a r) of cells e K and
r e L, and they have the dimensions; dim + dim r-n.

Remark." Similar arguments may bs treated for a standard
space X E(Xo f, X f, X,), in which X are singular corns
with bases X and f are maps of X into standard loop spaces
(-X) of -X. The conclusion of the following theorem II holds
under a suitable smoothness condition.. Fundamental Theorem. The fundamental result of this notes
is stated as follows"

Theorem II. If a pair (K, L) ofstandard complexes is 2-connected
and K is simply connected, then the injection homomorphisms of
homotopy groups i. ((K)) ,(9(K)) and i. ((K, L)) o
(9(K, L)) are all isomorphisms.
Corollary. We have isomorphisms ((K))v,+(K) and ((K,
L)) +(K, L).

Lemma. For every simply connected space X, there exist a stand-
ard complex K and a map f of K into X inducing the isomorphisms
of the homotopy groups of K onto those of X.

Let v.(X; X, ..., X,_) be the n-ad homotopy group of Blakers
and Massey), and set Y=X ... X,,_. and Y, X ... X_
X+ ... _. If X= Y ... UY,,_, in the following exact
sequence +(X; , ..., X,_ ) v(X X X:, ..., X X,_)o
(X; X, ..., ,_) (X; X, ..., X,,,_) ..., the injection homo-
morphism i. is an excision of (n-l) -ad homotopy group, because
X X (Y Y) (i 2, ..., n- 1). Then the main theorem
of Blakers and Massey) in triad homotopy group is generalized to

Proposition 1. Let (X X,..., _.)be an n-ad such that X=
Y Y,,._ If X is simply connected and Y Y) are r-connected
r ...;,2) and in every subpair of (X; X_) the excision axiom
of singular homology theory holds, then we have

(X; X, ..., X,_) 0 for npr.
Let K*=KUe be a complex obtained from a complex K by

attaching the singular n-cells. If (K, ’) is m-connected and ’ is
r-connected then homomorphisms

P" (", C’) _,+ (X, ’) (X*; ’, X)
induced by the generalized Whitehead product s> are isomorphisms
for pm+n+r and homomorphisms onto for pm+n+r.
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4. Homotopy Groups of Sphers. Since the (n + 1)-sphere S’+x is
a suspended space of the n-sphere S’, the standard loop space
(S+) may be defined, and it is constituted by kn-cells e’ (k=0,
1, 2, ...) such that e"L/e is an n-sphere S and e is attached to
S by a map [i, i,] S’- S which represents Whitehead product
of the identical map of SL The attachment of e’ is represented
by means of the generalized Whitehead product s) (2 + (- 1)’) [i,, i,.].
and a nullhomotopy of ((2 + (- 1))[i, i,]) (2 + (- 1)) [i,, [i,,
where i: represents a generator of ,(Se% S9.

Proposition 2. There are homomorphisms of (S-) +
(S"- e ) for even n ((S"-) for odd n) into +(S+ _.+, E+x)_
such that are isomorphisms for p4n-3 and homomorphisms onto

for p4n- 3, where S-yd is a cell-complex obtained from S
attaching a cell e- by a mapping of degree 3.

By normalizing the complex (S+) to a standard form, we
denote a standard loop complex o((S*+), S’) by Q,.+. Then the
homology groups of Q,+ are applied to the calculation of the
homotopy groups (Q+)+(S+’, +:"+, E::+) In case n=3, we
have the following results;

It follows from an exact sequence
Q p(Qq+l) &p(Sq) p+l(S’n+l) ,-(Q+)

that
Proposition . We have (S:) Z o(S) Z and (S’) Z.

Corollar) i) o(S) Z + Z and " Z for n5+6K

) (s) z (s) ()/z zo
,(S)/G1) Zo (Ss) Z+ (S) and ’/G Z,o for n9

) (s’) (s) z ,(s’)/z z
(S)/Z Z o(Ss) Z + ($7) (S)/Z Z and ,+s(S’) Z
for n10.
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