71. Topology of Standard Path Spaces and Homotopy Theory. I

By Hirosi TODA

Department of Mathematics, Osaka City University (Comm. by Z. SUETUNA, M.J.A., July 13, 1953)

This is the first of a series of notes, whose aim is to clarify the homological structure of the path space $\mathcal{Q}(X, A) = \{f: I^{10} \to X | f(0) = *, f(1) \in A\}$ by means of "standard path space" and to investigate the homotopical structure of spaces. The paper of J-P. Serre²⁰ based on the singular homology theory of fibre spaces shows how the loop space $\mathcal{Q}(X) = \mathcal{Q}(X, *)$ is applied to the calculation of the Hurewicz homotopy groups $\pi_{\nu}(X)$ of X.

It was proved by J. B. Giever³⁾ that to every space X there exists a CW-complex P(X) and a map of P(X) into X inducing isomorphisms of the homotopy groups of P(X) onto those of X. A problem to determine the homological structures of $P(\mathcal{Q}(X))$ from those of P(X) is closely related with Serre's theory. For the simply connected space X, this problem can be solved by selecting complexes K(X) and $\omega(K(X))$, so-called a standard complex and a standard path complex respectively, when the complex $\omega(K(X))$ is combinatorially constructed from K(X).

Here we give definitions of standard spaces and standard paths in them. The set of standard paths in a standard complex K, whose end points are in a subcomplex L of K, forms a closed subset $\omega(K, L)$ of $\Omega(K, L)$. The standard path space $\omega(K, L)$ is a CW-complex and is constructed from K and L by a combinationial method.

The fundamental result in this note is roughly stated as follows; the injection: $\omega(K, L) \rightarrow \Omega(K, L)$ induces isomorphisms of homotopy and homology groups of $\omega(K, L)$ onto those of $\Omega(K, L)$.

Our theory is applied to determine the orders of homotopy groups $\pi_p(S^n)$ of *n*-sphere S^n for $p \leq n+8$.

§1. Standard Paths in a Suspended Space. Let E(X) be a suspended space of a space X, which is obtained from $X \times I$ by shrinking a subset $* \times I \cup X \times I^{(4)}$ to a single point *, and let $d: X \times I \rightarrow E(X)$ be its shrinking map. Assume that a real function ρ of X is given such that ρ is positive excepting $\rho(*) = 0$. Then define a standard path $l(x_1, \ldots, x_n; y, t): I \rightarrow E(X)$ by a formula

(A)
$$l(x_1, \ldots, x_n; y, t)$$
 $(s) = \begin{cases} d(x_i, (s - s_{i-1})/\rho(x_i)) & s_{i-1} \leq s \leq s_i, \\ d(y, (s - s_n)/\rho(y)) & s_n \leq s \leq 1, \end{cases}$

where $x_i \in X$, $y \in A \subset x$, $t \in I$, $s_0 = 0$ and $s_i = \sum_{k=1}^{4} \rho(x_k) / (\sum_{k=1}^{n} \rho(x_k) + t \cdot \rho(y))$

for i = 1, ..., n. The path $l(x_1, ..., x_n; y, t)$ starts at the base point * and ends at a point d(y, t) of $E(A) = d(A \times I)$. The set of paths $l(x_1, ..., x_n; y, t)$ forms a closed subset $\omega(E(X), E(A))$ of the path space $\mathcal{Q}(E(X), E(A))$, called a standard path space of the pair (E(X), E(A)). Denote a loop $l(x_1, ..., x_n; *, 0)$ by $l(x_1, ..., x_n)$ and denote the set $\omega(E(X), *)$ of standard loops by $\omega(E(X))$. Let $(X)^n$ be an *n*-fold product of X, identify $(X)^{n-1}$ to $(X)^{n-1} \times * \subset (X)^n$ and set \bigcup_n $(X)^n = (X)^\infty$. Then the space $\omega(E(X), E(A))$ is obtained from $(X)^\infty$ $\times A \times I$ by the following identifications:

 $(x_1, \ldots, x_n; y, 0) \equiv (x_1, \ldots, x_{n-1}; x_n, 1) \equiv (x_1, \ldots, x_n; *, t)$ and $(x_1, \ldots, x_n; y, t) \equiv (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n; y, t)$ if $x_i = *$.

Specially, the space X is naturally imbedded into $\omega(E(X), E(A))$ by a correspondence: $x \to l(x)$.

A pair (X, A) is said to have a homotopy extension property if $X \times (0) \cup A \times I$ is a deformation retract of $X \times I$. Then our primary result is;

Theorem I. If (X, A) and (A, *) have the homotopy extension property and if X is arcwise connected and (X, A) is 1-connected, then the injection homomorphisms of homotopy groups $i_*: \pi_p(\omega(E(X))) \rightarrow \pi_p(\Omega(E(X)))$ and $i_*: \pi_p(\omega(E(X), E(A))) \rightarrow \pi_p(\Omega(E(X), E(A)))$ are all isomorphisms⁵.

For a map $f: (Y, y_*) \to (\omega(E(X)), l(*))$ we define a suspension $Ef: E(Y) \to E(X)$ of X by setting Ef(d(y, t)) = f(y)(t). If Y is a finite polyhedron, the homotopy classes of f and Ef correspond one-to-one. Since the set of all classes of Ef coincides to the fundamental group of a function space $E(X)_0^Y = \{g: Y \to E(X) | g(y_*) = *\}$, the homotopy classes of f form a group. This group is a generalization of the cohomotopy groups of E. Spanier⁶. We mention the fact that there are suspension isomorphisms

and

$$\pi_{p}(\omega(E(X)) \approx \pi_{p+1}(E(X)),$$

$$\pi_{p}(\omega(E(X), E(A)) \approx \pi_{p+1}(E(X), E(A)),$$

$$\pi_{p}(\omega(E(X)), X) \approx \pi_{p+1}(E(X); \hat{X}_{+}, \hat{X}_{-}),$$

where $X = d(X \times [\frac{1}{2}, 1]), \quad \hat{X}_{-} = d(X \times [0, \frac{1}{2}])$ and $\pi_{\nu+1}(E(X); \hat{X}_{+}, \hat{X}_{-})$ is the homotopy groups of triad⁷.

§ 2. Definition of Standard Paths. In this section we define a standard complex ${}^{m}K = E(K_0; f_1, E_1; \ldots; f_m, E_m)$ and standard paths in K inductively. For n=0, ${}^{0}K$ is the suspended space $E(K_0)$ of a CW-complex K_0 and the standard path in it was already defined in § 1 by the formula (A) with respect to the function ρ of K_0 . Define a real function ρ_0 of $\omega({}^{0}K)$ by $\rho_0(l(x_1, \ldots, x_n)) = \rho(x_1) + \cdots + \rho(x_n)$. Suppose the standard complex ${}^{m-1}K$, the space $\omega({}^{m-1}K)$ of the standard ready loops in ${}^{m-1}K$ and a real function ρ_{m-1} of $\omega({}^{m-1}K)$ are already

defined such that ${}^{m-1}K$ is a CW-complex and ρ_{m-1} is positive excepting $\rho_{m-1}(l(*))=0$. Let f_m be a map of (S, s_*) into $(\omega({}^{m-1}K), l(*))$, where $S = \bigcup_{\alpha} S_{\alpha}^{n_{\alpha}}$ is the sum of n_{α} -spheres $S_{\alpha}^{n_{\alpha}}$ $(n_{\alpha} \ge 1)$ having a single point s_* in common. Define a map $F_m: E(S) \to {}^{m-1}K$ by setting F_m $(d(y, t))=f_m(y)(t)$, where $E(S)=\bigcup_{\alpha} S_{\alpha}^{n_{\alpha}+1}$ is the suspended space of Sand $d: S \times I \to E(S)$ is its shrinking map. Then the standard complex ${}^{m}K = {}^{m-1}K \cup \overline{\varepsilon}_m = (\overline{\varepsilon}_m \bigcup_{\alpha} \varepsilon_{\alpha}^{n_{\alpha}+2})$ is obtained from K attaching the $(n_{\alpha}+2)$ -cells $\varepsilon_{\alpha}^{n_{\alpha}+2}$ by $F_m | S_{\alpha}^{n_{\alpha}+1}$. Let $\omega({}^{m-1}K) \cup \varepsilon_m(\varepsilon_m = \bigcup_{\alpha} \varepsilon_{\alpha}^{n_{\alpha}+1})$ be a complex obtained from $\omega({}^{m-1}K)$ attaching the $(n_{\alpha}+1)$ -cells $\varepsilon_{\alpha}^{n_{\alpha}+1}$ by $f_m | s_{\alpha}^{n_{\alpha}}$, then there exists a map

$$l_m: (\omega(m^{m-1}K) \cup \varepsilon_m) \times I \to K$$

such that $d_m(l, t) = l(t)$ for $l \in \omega(^{m-1}K)$, $d_m((\omega(^{m-1}K) \cup \varepsilon_m) \times \dot{I}) = *$ and d_m is homeomorphic elsewhere. The function ρ_{m-1} of $\omega(^{m-1}K)$ is extendable to whole of ε_m positively excepting $\rho_{m-1}(l(*)) = 0$. A standard path

$$l(x_1,\ldots,x_n;y,t): I \rightarrow^m K$$

is defined for $x_i, y \in \omega({}^{m-1}K) \cup \varepsilon_m$ and $t \in I$ by the formula (A), replacing the operations d and ρ by d_m and ρ_{m-1} respectively. The space of all standard loops $l(x_1, \ldots, x_n) = l(x_1, \ldots, x_n; *, 0)$ will be denoted by $\omega({}^mK) \subset \mathcal{Q}({}^mK)$. Finally we define a real function ρ_m of $\omega({}^mK)$ by $\rho_m(l(x_1, \ldots, x_n)) = \sum_{i=1}^n \rho_{m-1}(x_i)$.

In general, standard complex $K = E(K_0; f_1, \varepsilon_1; \ldots; f_m, \varepsilon_m; \ldots)$ is a CW-complex defined by $K = \bigcup_m {}^m K$. Since a correspondence $x \rightarrow l(x)$ $(x \in \omega({}^{m-1}K))$ is an imbedding of $\omega({}^{m-1}K)$ into $\omega({}^m K)$, we may define a space $\omega(K)$ of standard loops in K by $\omega(K) = \bigcup_m \omega({}^m K)$. Let L be a subcomplex of K, then L is represented by a form $E(L_0; f'_1, \varepsilon'_1; \ldots; f'_m, \varepsilon'_m; \ldots)$ where $\varepsilon'_i = \varepsilon_i \cap L$ and $f'_i = f_i | \varepsilon'_i$. The set of all paths $l(x_1, \ldots, x_n; y, t)$, for $x_i \in \omega({}^{m-1}K) \cup \varepsilon_m, y \in \omega({}^{m-1}L) \cup \varepsilon'_m$ and $t \in I$, forms a colsed subset $\omega({}^m K, {}^m L)$ of $\mathcal{Q}({}^m K, {}^m L)$ where ${}^m L = L \cap {}^m K$. Let us define a space of standard paths $\omega(K, L)$ by $\bigcup_m \omega({}^m K, {}^m L)$. Then the space $\omega(K, L)$ is constructed from K and L combinatorially as follows, and this space becomes a CW-complex. Define a continuous map

$$^{\vee}: \omega(K) \times \omega(K, L) \rightarrow \omega(K, L)$$

by $\lor(l(x))$, $l'(x', t)) = l \lor l'(x; x', t)$ for paths x, x' of ${}^{m}K(m;$ sufficiently large). Then $\lor(\omega({}^{m}K) \times \omega({}^{m}K)) = \omega({}^{m}K)$, $l \lor l(*) = l(*) \lor l = l$ and $l \lor(l' \lor l'') = (l \lor l') \lor l''$, and this implies the simplicity of $\omega(K)$ and $(\mathcal{Q}(K), \omega(K))$. Considering a correspondence: $(x_1, \ldots, x_n; y, t) \to l(x_1, \ldots, x_n; y, t)$, we have that the standard path space $\omega({}^{m}K, {}^{m}L)$ is constructed from $(\omega({}^{m-1}K) \cup \varepsilon_m)^{\infty} \times (\omega({}^{m-1}L) \cup \varepsilon'_m) \times I$ by the following identifications; $(x_1, \ldots, x_n; y, 0) \equiv (x_1, \ldots, x_{n-1}; x'_n, 1) \equiv (x_1, \ldots, x_n; *, t),$ $(x_1, \cdots, x_n; y, t) \equiv (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n; y, t)$ if $x_i = *$,

H. TODA

 $(x_1, \ldots, x_n; y, t) \equiv (x_1, \ldots, x_{i-1}, x_i^{\vee} x_{i+1}, x_{i+2}, \ldots, x_n; y, t)$ if $x_i, x_{i+1} \in \omega^{(m-1}K)$ and

 $(x_1, \ldots, x_n; y, t) = (x_1, \ldots, x_{n-1}; x_n^{\vee} l(y, t))$

if x_n , $y \in \omega(m^{-1}K)$. This identifications offer us a cellular decomposition of $\omega(^{m}K, ^{m}L)$ and a fortiori that of $\omega(K, L)$. Cells of $\omega(K, L)$ are represented by finite sequences $(\sigma_1, \ldots, \sigma_n; \tau)$ of cells $\sigma_i \in K$ and $\tau \in L$, and they have the dimensions; $\sum \dim \sigma_i + \dim \tau - n$.

Remark: Similar arguments may be treated for a standard space ${}^{m}X = E(X_{0}; f_{1}, \hat{X}_{1}; \ldots; f_{m}, \hat{X}_{m})$, in which \hat{X}_{i} are singular corns with bases X_{i} and f_{i} are maps of X_{i} into standard loop spaces $\omega({}^{i-1}X)$ of ${}^{i-1}X$. The conclusion of the following theorem II holds under a suitable smoothness condition.

§ 3. Fundamental Theorem. The fundamental result of this notes is stated as follows:

Theorem II. If a pair (K, L) of standard complexes is 2-connected and if K is simply connected, then the injection homomorphisms of homotopy groups $i_*: \pi_p(\omega(K)) \to \pi_p(\Omega(K))$ and $i_*: \pi_p(\omega(K, L)) \to \pi_p$ $(\Omega(K, L))$ are all isomorphisms.

Corollary. We have isomorphisms $\pi_p(\omega(K)) \approx \pi_{p+1}(K)$ and $\pi_p(\omega(K, L)) \approx \pi_{p+1}(K, L)$.

Lemma. For every simply connected space X, there exist a standard complex K and a map f of K into X inducing the isomorphisms of the homotopy groups of K onto those of X.

Let $\pi_p(X; X_1, \ldots, X_{n-1})$ be the *n*-ad homotopy group of Blakers and Massey⁷⁾, and set $Y = X_1 \cap \ldots \cap X_{n-1}$ and $Y_i = X_1 \cap \ldots \cap X_{i-1} \cap X_{i+1} \cap \ldots \cap X_{n-1}$. If $X = Y_1 \cup \ldots \cup Y_{n-1}$, in the following exact sequence $\pi_{p+1}(X; X_1, \ldots, X_{n-1}) \xrightarrow{\partial} \pi_p(X_1; X_1 \cap X_2, \ldots, X_1 \cap X_{n-1}) \xrightarrow{i_*} \pi_p(X; X_2, \ldots, X_{n-1}) \rightarrow \pi_p(X; X, \ldots, X_{n-1}) \xrightarrow{\partial} \cdots$, the injection homomorphism i_* is an excision of (n-1) -ad homotopy group, because $X_1 \cap X_i = X_i - (Y_1 - Y)$ $(i = 2, \ldots, n-1)$. Then the main theorem of Blakers and Massey⁷⁾ in triad homotopy group is generalized to

Proposition 1. Let $(X; X_1, \ldots, X_{n-1})$ be an n-ad such that $X = Y_1 \cup \ldots \cup Y_{n-1}$ If X is simply connected and (Y_i, Y) are r_i -connected $(r_i \ge 2)$ and if in every subpair of $(X; X_1, \ldots; X_{n-1})$ the excision axiom of singular homology theory holds, then we have

$$\pi_p(X; X_1, \ldots, X_{n-1}) = 0$$
 for $n \leq p \leq \sum_{i=1}^{n-1} r_i$.

Let $K^* = K \cup \varepsilon^n$ be a complex obtained from a complex K by attaching the singular *n*-cells. If $(K, \dot{\varepsilon}^n)$ is *m*-connected and $\dot{\varepsilon}^n$ is *r*-connected then homomorphisms

 $P: \pi_n(\varepsilon^n, \dot{\varepsilon}^n) \times \pi_{p-n+1}(X, \dot{\varepsilon}^n) \to \pi_p(X^*; \varepsilon^n, X)$ induced by the generalized Whitehead product⁸⁾ are isomorphisms for p < m+n+r and homomorphisms onto for $p \le m+n+r$. §4. Homotopy Groups of Sphers. Since the (n+1)-sphere S^{n+1} is a suspended space of the *n*-sphere S^n , the standard loop space $\omega(S^{n+1})$ may be defined, and it is constituted by kn-cells e^{kn} (k=0,1, 2, ...) such that $e^0 \cup e^n$ is an *n*-sphere S^n and e^{2n} is attached to S^n by a map $[i_n, i_n]: S^{2n-1} \to S^n$ which represents Whitehead product of the identical map of S^n . The attachment of e^{in} is represented by means of the generalized Whitehead product⁸⁾ $(2 + (-1)^n) [i_n, i_{2n}]_r$ and a nullhomotopy of $\partial((2 + (-1)^n)[i_n, i_{2n}]_r) = (2 + (-1)^n) [i_n, [i_n, i_n]]$, where i_{2n} represents a generator of $\pi_{\geq n}(S^n \cup e^{in}, S^n)$.

Proposition 2. There are homomorphisms χ of $\pi_p(S^{2n-1}) + \pi_p(S^{2n-2} \lor e^{2n-1})$ for even $n \ (\pi_p(S^{2n-1}) \ for \ odd \ n)$ into $\pi_{p+2}(S^{n+1}; E_+^{n+1}, E_-^{n+1})$ such that χ are isomorphisms for $p \leq 4n-3$ and homomorphisms onto for $p \leq 4n-3$, where $S^{2n-2} \lor e^{2n-1}$ is a cell-complex obtained from S^{2n-2} attaching a cell e^{2n-1} by a mapping of degree 3.

By normalizing the complex $\omega(S^{n+1})$ to a standard form, we denote a standard loop complex $\omega(\omega(S^{n+1}), S^n)$ by Q_{n+1} . Then the homology groups of Q_{n+1} are applied to the calculation of the homotopy groups $\pi_p(Q_{n+1}) \approx \pi_{p+2}(S^{n+1}; E_+^{n+1}, E_-^{n+1})$. In case n=3, we have the following results;

Р	3	4	5	6	7	8	9	10
$H_p\left(Q_{\scriptscriptstyle 3} ight)$	Z	Z_3	0	Z_2	Z_3	Z_{15}	Z_2	0
$\pi_p(Q_3)$	Z	Z_6	Z_2	Z_{24}	Z_6	Z_{30}	Z_6	

It follows from an exact sequence

$$\cdots \to \pi_p(Q_{n+1}) \to \pi_p(S^n) \xrightarrow{E} \pi_{p+1}(S^{n+1}) \to \pi_{p-1}(Q_{n+1}) \to \cdots$$

References

1) I = [0, 1] indicates unit interval.

2) "Homologie singulière des espace fibrés", Ann. Math., 54 (1951).

3) "On the equivalence of two singular homology theories", Ann. Math., 51 (1950).

4)
$$I = (0) \smile (1)$$
.

that

303

5) The theorem holds for the injection homomorphisms of the singular homology groups.

6) "Borsuk's cohomotopy groups", Ann. Math., 50 (1949).

7) A.L. Blakers and W.S. Massey: "The homotopy groups of a triad I", Ann. Math., 53 (1952).

8) H. Toda: "Generalized Whitehead products and homotopy groups of spheres", Jour. Inst. Poly. Osaka City Univ., **3** (1952).

9) For $p \leq n+5$, the groups $\pi_p(S^n)$ are obtained by J-P. Serre ("Sur la suspension de Freudenthal", C. R., **234** (1952)) and the author.

10) $G_4/Z_2 = Z_3$