97. Note on Dirichlet Series. X. Remark on S. Mandelbrojt's Theorem

By Chuji Tanaka
Mathematical Institute, Waseda University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1953)

(1) Introduction. Let us put
(1. 1) $F(s)=\sum_{n=1}^{\infty} a_{n 2} \exp \left(-\lambda_{n} s\right) \quad\left(s=\sigma+i t, 0 \leqq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n 2} \rightarrow+\infty\right)$.

Let $F(s)$ be uniformly convergent in the whole plane. Then $F(s)$ defines the integral function, and for any given $\sigma, \operatorname{Sup}_{-\infty<t<+\infty}|F(\sigma+i t)|$ has the finite value $M(\sigma)$. After J. Ritt ${ }^{1)}$ (pp. 18-19), we can define the order and type of $F(s)$ as follows:

Definition I. The order σ of (1.1) is defined by

$$
\rho=\varlimsup_{\sigma \rightarrow-\infty} 1 /(-\sigma) . \log ^{+} \log ^{+} M(\sigma),
$$

where $\log ^{+} x=\operatorname{Max}(0, \log x) . \quad$ If $0<\rho<+\infty$, then the type k of (1.1) is defined by

$$
k=\varlimsup_{\sigma \rightarrow-\infty} 1 / \exp ((-\sigma) \rho) . \log ^{+} M(\sigma) .
$$

Definition II. Let $D(r ; C)$ be the curved strip which is generated by circles with radii r, and having its centres on the analytic curve C, which extends to $\mathfrak{R}(s)=-\infty$. Then the order $\rho(D)$ in D is defined by

$$
\rho(D)=\lim 1 /(-\sigma) . \log ^{+} \log ^{+} M(\sigma ; D),
$$

where $M(\sigma ; D)=M a x|F(s)|$. If $0<\rho(D)<+\infty$, then the type $k(D)$ in D is defined by

$$
k(D)=\varlimsup_{\sigma \rightarrow-\infty} 1 / \exp ((-\sigma) \rho(D)) \cdot \log ^{+} M(\sigma ; D)
$$

S. Mandelbrojt has proved the following.

Theorem (S. Mandelbrojt ${ }^{1)}$ p. 19). Let (1.1) with $\underline{\lim }_{n \rightarrow+\infty}\left(\lambda_{n+1}-\lambda_{n 2}\right)=$ $h>0, \varlimsup_{n \rightarrow+\infty} n / \lambda_{n}=\delta(\leq 1 / h)$ be simply (necessarily absolutely) convergent in the whole plane. Then, in any strip: $|\mathfrak{J}(s)-t| \leqq \pi(\delta+\varepsilon)(t$: arbitrary but fixed, ε : any given positive constant), (1.1) has the same order as in the whole plane.

In this note, we shall generalize it as follows:
Theorem. Let (1.1) with $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1}-\lambda_{n}\right)=h>0, \varlimsup_{n \rightarrow+\infty} n / \lambda_{n}=\delta \quad(\leqq$ $1 / h)$ be simply (necessarily absolutely) convergent in the whole plane. Then, in any curved $\operatorname{strip} D(\pi(\delta+\varepsilon) ; C)(\varepsilon:$ any given positive constant), (1.1) has the same order as in the whole plane.

If furthermore $\delta=0$, then in $D(\varepsilon ; C)$, (1.1) has the same order and type as in the whole plane.

Remark. G. Pólya ${ }^{2)}$ (p. 627) has proved the second part of this theorem in the case of Taylor series by the very complicated method.
(2) Lemma. We shall establish next lemma, which is a generalization of J. J. Gergen-S. Mandelbrojt's theorem ${ }^{\text {133 }}$. (1) pp. 13-14, 3) pp. 4-6).

Lemma. Under the same conditions as in the theorem, we have

$$
\operatorname{Sup}_{\mathfrak{R}(s)=\mathfrak{R}\left(s_{0}\right)}\left|F^{\prime}(s)\right| \leqq A \cdot \operatorname{Max}_{\left|u-s_{1}\right|=\pi(\sigma+\varepsilon)}|F(u)|
$$

where
(i) s_{0}, s_{1} : two arbitrary points, but $\mathfrak{R}\left(s_{1}\right)=\mathfrak{R}\left(s_{0}\right)$

$$
-\left(3 \delta \log \left(e^{8} / h \delta\right)+2 \varepsilon\right),
$$

(ii) A : constant depending upon only ε, δ and $\left\{\lambda_{n}\right\}$.

Proof. By $\varlimsup_{n \rightarrow+\infty} n / \lambda_{n}=\delta<+\infty, \sum_{n=1}^{\infty} 1 / \lambda_{n}^{2}$ converges, so that, putting

$$
\begin{equation*}
\varphi_{n}(z)=\prod_{\substack{v=1 \\ v \neq n}}^{\infty}\left(1-z^{2} / \lambda_{\nu}^{2}\right) \tag{2.1}
\end{equation*}
$$

(2.1) is an integral function. Hence, by F. Carlson-A. Ostrowski's theorem ${ }^{4)}$ (p.267), for any given $\varepsilon(>0)$, we have

$$
\begin{equation*}
\left|\varphi_{n 2}(z)\right|<\exp (\pi(\delta+\varepsilon)|z|) \quad \text { for } \quad|z|>R(\varepsilon) \tag{2.2}
\end{equation*}
$$

Setting $\varphi_{n}(z)=\sum_{\nu=0}^{\infty} c_{\nu}^{(n)} / \nu!\cdot z^{\nu}$, by Cauchy's theorem and (2.2), we get easily

$$
\left|c_{\nu}^{(n)} / \nu!\right|<1 / r^{\nu} \cdot \exp (\pi(\delta+\varepsilon) r) \quad r=|z|
$$

Since the right-hand side takes its minimum at $r=\nu / \pi(\delta+\varepsilon)$, for sufficiently large ν, we have

$$
\left|c_{\nu}^{(n)}\right|<\{\pi(\delta+2 \varepsilon)\}^{\nu}
$$

Hence, there exists a constant $K_{1}(\varepsilon)$ such that

$$
\begin{equation*}
\left|c_{\nu}^{(n)}\right|<K_{1}(\varepsilon) .\{\pi(\delta+2 \varepsilon)\}^{\nu} \quad(\nu=1,2, \ldots) \tag{2.3}
\end{equation*}
$$

Putting $\Phi_{n}(z)=\sum_{\nu=0}^{\infty} c_{\nu}^{(n)} / z^{\nu+1}$, by (2.3), $\Phi_{n}(z)$ is convergent for $|z|>\pi \delta$. On account of H. Cramer-A. Ostrowski's theorem ${ }^{4)}$ (pp. 49-52), we have
so that, by (2.3)

$$
\begin{aligned}
a_{n} \varphi_{n}\left(\lambda_{n}\right) \exp \left(-\lambda_{n} s\right) & =\sum_{v=1}^{\infty} a_{\nu} \varphi_{n 2}\left(\lambda_{v}\right) \exp \left(-\lambda_{v} s\right) \\
& =1 / 2 \pi i \oint_{|u|=\pi(\delta+3 \varepsilon)} F(s-u) \Phi_{n n}(u) d u
\end{aligned}
$$

$$
\begin{gathered}
\left|a_{n} \varphi_{n}\left(\lambda_{n}\right) \cdot \exp \left(-\lambda_{n} s\right)\right| \\
\leqq \operatorname{Max}_{|s-u|=\pi(\delta+3 \varepsilon)}|F(u)| \cdot 1 / 2 \pi \cdot \oint_{|u|=\pi(\delta+3 \varepsilon)}\left\{\sum_{\left.\substack{\nu 0 \\
\infty} c_{v}^{(n)} / u^{\nu+1} \mid\right\}|d u|}^{<\operatorname{Max}_{|s-u|=\pi(\delta+3 \varepsilon)}|F(u)| \cdot K_{1}(\varepsilon) \cdot \sum_{\nu=0}^{\infty}\{(\delta+2 \varepsilon) /(\delta+3 \varepsilon)\}^{\nu}} .\right.
\end{gathered}
$$

Therefore, replacing ε by $\varepsilon / 3$, we can put

$$
\begin{equation*}
\left|a_{n 2} \varphi_{n}\left(\lambda_{n 2}\right) \exp \left(-\lambda_{n} s\right)\right| \leqq C \operatorname{Max}_{|s-u|=\pi(\delta+\varepsilon)}|F(u)| \tag{2.4}
\end{equation*}
$$

where C : a constant depending upon only ε and δ.
On the other hand, by F. Carlson-A. Ostrowski's theorem ${ }^{4)}$ (p. 267) for any given $\varepsilon(>0)$, and sufficiently large λ_{2}, we get

$$
\left|1 / \varphi_{n}\left(\lambda_{n}\right)\right|<\exp \left\{\left(3 \delta \log \left(e^{6} / h \delta\right)+\varepsilon\right) \lambda_{n}\right\} .
$$

Accordingly, there exists a constant $K_{2}(\varepsilon)$ such that

$$
\begin{equation*}
\left|1 / \varphi_{n}\left(\lambda_{n}\right)\right|<K_{2}(\varepsilon) \exp \left\{\left(3 \delta \underset{(n=1,2, \ldots)}{\left.\left.\log \left(e^{6} / h \delta\right)+\varepsilon\right) \lambda_{n}\right\} .}\right.\right. \tag{2.5}
\end{equation*}
$$

By (2.4), in which we put $s=s_{1}\left(\mathfrak{R}\left(s_{1}\right)=\mathfrak{R}\left(s_{0}\right)-\left(3 \delta \log \left(e^{8} / h \delta\right)+2 \varepsilon\right)\right)$, we obtain
so that

$$
\begin{gathered}
\left|a_{n 2}\right| \exp \left(-\lambda_{n} \Re\left(s_{0}\right)\right) \cdot \exp \left\{\lambda_{n 2}\left(3 \delta \log \left(\epsilon^{6} / h \delta\right)+2 \varepsilon\right)\right\} \\
\leqq\left|1 / \mathscr{\varphi}_{n 2}\left(\lambda_{n 2}\right)\right| \cdot C \cdot \operatorname{Max}_{\mid u \in s_{1}=\pi(\delta+\varepsilon)}|F(u)|,
\end{gathered}
$$

Hence,

$$
\left|a_{n}\right| \exp \left(-\lambda_{n} \Re\left(s_{0}\right)\right) \leqq \exp \left(-\lambda_{n} \varepsilon\right) \cdot K_{2} \cdot C . \operatorname{Max}_{|u-s|=\pi(\delta+\varepsilon)}|F(u)|
$$

$$
\begin{gather*}
\operatorname{Sup}_{\Re(s)=\Re\left(s_{0}\right)}|F(s)| \tag{2.6}\\
\leqq \sum_{n=1}^{\infty}\left|a_{n}\right| \exp \left(-\lambda_{n} \Re\left(s_{0}\right)\right) \\
\leqq\left\{\sum_{n=1}^{\infty} \exp \left(-\lambda_{n} \varepsilon\right)\right\} \cdot K_{2} \cdot C \cdot \operatorname{Max}_{\left|k=s_{1}\right|=\pi(\delta+\varepsilon)}|F(u)| \cdot
\end{gather*}
$$

By G. Valiron's theorem ${ }^{4)}$ (p. 4) and $\lim \log n / \lambda_{n}=0$, the simple convergence-abscissa σ_{s} of $\sum_{n=1}^{\infty} \exp \left(-\lambda_{n} s\right)^{n \rightarrow \infty}$ is given by

$$
\sigma_{s}=\varlimsup_{n \rightarrow \infty} 1 / \log \lambda_{2} . \log 1=0
$$

so that $\sum_{n=1}^{\infty} \exp \left(-\lambda_{n} \varepsilon\right)<+\infty$. Thus, by (2.6) we get

$$
\operatorname{Sup}_{\Re(s)=\Re\left\{\left(s_{0}\right)\right.}|F(s)| \leqq A \underset{\left|u-s_{1}\right|=\pi(\delta+\varepsilon)}{\operatorname{Max}}|\boldsymbol{F}(u)| .
$$

(3) Proof of theorem.
(I) Let (1.1) be of order ρ. Then, by definition, there exists at least one sequence $\left\{\sigma_{m}\right\}$ such that
(i) $\lim _{m \rightarrow+\infty} \sigma_{m}=-\infty$
(ii) $\rho=\lim _{m \rightarrow+\infty} 1 /\left(-\sigma_{m}\right) \cdot \log ^{+} \log ^{+} M\left(\sigma_{m}\right)$.

Let us define two points s_{0}, s_{1} on C such that
(i) $s_{0}=\sigma_{m}+i t_{m}$,
(ii) $\mathfrak{R}\left(s_{1}\right)=\mathfrak{R}\left(s_{0}\right)-(r(\delta)+\varepsilon), r(\delta)=3 \delta \log \left(e^{\theta} / h \delta\right)$.

By lemma, in which we replace ε by $\varepsilon / 2$, we get

$$
M\left(\sigma_{m}\right) \leqq A \cdot \operatorname{Max}_{\left|u-s_{1}\right|=\pi(\delta+\ell / 2)}|F(u)|=A \cdot \mid \underset{\left|s_{1}^{\prime}-s_{1}\right|=\pi(\delta+\varepsilon / 2)}{\left|F\left(s_{1}^{\prime}\right)\right|}
$$

Therefore, putting $\mathfrak{R}\left(s_{1}^{\prime}\right)=\sigma_{m}^{\prime}$, we get

$$
M\left(\sigma_{m}\right) \leqq A\left|F\left(s_{1}^{\prime}\right)\right| \leqq A M\left(\sigma_{m}^{\prime} ; D\right)
$$

where $M\left(\sigma_{m}^{\prime} ; D\right)=\operatorname{Max}_{\Re(s)=\sigma_{m}^{\prime}, s \in D}|F(s)|$, so that, by (3.1)

$$
\begin{align*}
\rho & =\lim _{m \rightarrow+\infty} 1 /\left(-\sigma_{m}\right) \cdot \log ^{+} \log ^{+} M\left(\sigma_{m}\right) \tag{3.2}\\
& \leqq \varlimsup_{m \rightarrow+\infty} 1 /\left(-\sigma_{m}^{\prime}\right) \cdot \log ^{+} \log ^{+} M\left(\sigma_{m}^{\prime} ; D\right) . \varlimsup_{m \rightarrow+\infty}\left(\sigma_{m}^{\prime} / \sigma_{m}\right)
\end{align*}
$$

Since $\left|\sigma_{m}-\sigma_{m}^{\prime}\right| \leqq r(\delta)+\varepsilon+\pi(\delta+\varepsilon / 2)$, we have evidently

$$
\lim _{m \rightarrow+\infty} \sigma_{m}^{\prime} / \sigma_{m}=1
$$

Hence, by (3.2),
$\rho \leqq \varlimsup_{m \rightarrow+\infty} 1 /\left(-\sigma_{m}^{\prime}\right) . \log ^{+} \log ^{+} M\left(\sigma_{m}^{\prime} ; D\right) \leqq \varlimsup_{\sigma \rightarrow-\infty} 1 /(-\sigma) . \log ^{+} \log ^{+} M(\sigma ; D)$. Since the opposite inequality is evident, the equality holds, which proves the first part of theorem.
(II) Let (1.1) with $\delta=0$ be of order $\rho(0<\rho<+\infty)$, and of type k. Then, by definition, there exists at least one sequence $\left\{\sigma_{m}\right\}$ such that
(i) $\lim _{m \rightarrow+\infty} \sigma_{m}=-\infty$
(ii) $k=\lim _{m \rightarrow+\infty} 1 / \exp \left(\left(-\sigma_{m}\right) \rho\right) \cdot \log ^{+} M\left(\sigma_{m}\right)$.

We define two points s_{0}, s_{1} on C such that
(i) $s_{0}=\sigma_{m}+i t_{m}$,
(ii) $\mathfrak{R}\left(s_{1}\right)=\mathfrak{R}\left(s_{0}\right)-\varepsilon^{\prime} / \pi . \quad\left(0<\varepsilon^{\prime}<\varepsilon\right)$

Applying lemma, in which we replace ε by $\varepsilon^{\prime} / 2 \pi$, we get

$$
M\left(\sigma_{m}\right) \leqq A \underset{\left|u-s_{1}\right|=\varepsilon^{\prime} / 2}{\operatorname{Max}}|F(u)|=A \underset{| |_{1}^{\prime}-s_{1} \mid=\varepsilon^{\prime} / 2}{\left|F\left(s_{1}^{\prime}\right)\right|,}
$$

so that, putting $\sigma_{m}^{\prime}=\Re\left(s_{1}^{\prime}\right), \quad M\left(\sigma_{m}\right) \leqq A . M\left(\sigma_{m}^{\prime} ; D\right)$.
Hence, by (3.3)

$$
\begin{aligned}
& k=\lim _{m \rightarrow+\infty} 1 / \exp \left(\left(-\sigma_{m}\right) \rho\right) \cdot \log ^{+} M\left(\sigma_{m}\right) \\
& \leqq \varlimsup_{m \rightarrow+\infty} 1 / \exp \left(\left(-\sigma_{m}^{\prime}\right) \rho\right) \cdot \log ^{+} M\left(\sigma_{m}^{\prime} ; D\right) \varlimsup_{m \rightarrow+\infty} \exp \left(\left(\sigma_{m}-\sigma_{m}^{\prime}\right) \rho\right) \\
& \leqq \varlimsup_{\sigma \rightarrow-\infty} 1 / \exp ((-\sigma) \rho) \cdot \log ^{+} M(\sigma ; D) \cdot \exp \left(\varepsilon^{\prime}(1 / \pi+1 / 2) \rho\right) \\
& =k(D) \cdot \exp \left(\varepsilon^{\prime}(1 / \pi+1 / 2) \rho\right) .
\end{aligned}
$$

Letting $\varepsilon^{\prime} \rightarrow 0$,

$$
k \leqq k(D)
$$

Since the opposite inequality is evident, the equality holds, which proves the second part of theorem.

References

1) S. Mandelbrojt: "Séries lacunaires", Actualités scientifiques et industrielles, Paris, 305 (1936).
2) G. Pólya: ,, Untersuchungen über Lücken und Singularitäten von Potenzreihen ", Math. Zeit., 29 (1929).
3) J. J. Gergen-S. Mandelbrojt: "On entire functions defined by a Dirichlet series", Amer. Jour. Math., 53 (1931).
4) V. Bernstein: "Leçons sur les progrès récents de la théorie des séries de Dirichlet", Collection Borel (1933).
