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113. On the Transformations Preserving the Canonical
Form of the Equations of Motion

By Takashi Kasuga
Department of Mathematics, Osaka University
(Comm. by K. KuNuGl, M.J.A., Nov. 12, 1953)

Introduction. In this paper, we shall prove that any trans-
formation preserving the canonical form of the equations of motion
can be composed of a canonical transformation and a transforma-
tion of the form Q,=pg:, P;=p. 1=1,...,n where p=+0 is a constant.
(For the precise formulation, see section 8, 4.)

For the sake of completeness, we shall prove first some lemmas
on matrices which will be used later.

1. We shall call a real regular matrix 4 of degree 2n, a real
quast-symplectic matriz (we abbreviate it as r.q.s.m.) with a mul-
tiplier p, if

P ‘5__1{(004?/:”. - wuny‘) = ?‘;‘l(a’;y;i-n - m;-é-ny;) (1)
for two arbitrary vectors (x,...,%m), (.. .,%), Where p is a real
number and

#f “ W %

=Al L ]=A

w;u wzn y;n y?n
A r.q.s.m. with the multiplier 1 is called a real symplectic matrix
(we abbreviate it as r.s.m.). A real regular matrix 4 of degree
2n is a r.q.s.m. with a multiplier p if and only if

PJ = A*JA ( 2 )
where A* is the transposed of A and
0 E,
J = ( z )(E. is the unit matrix of degree n).
\ ™ Ly 0

From (2), a multiplier of a r.q.s.m. is a non-vanishing real number.
A real matrix B of degree 2n is called an infinitesimal real
symplectic matriz (we abbreviate it as i.r.s.m.), if
JB + B*J=0. (8)
If we write a real matrix B of degree 2n in the form

B, B,
B =
B3 B4

where B,, B,, B;, B, are matrices of degree n, then B is an i.r.s.m.
if and only if

B, = — B¥, B, = Bf, B, = B¥. (4)

2. Lemma 1. Let A(t), B(t) be real matrices of degree 2n de-
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pending on a parameter t (L, <t<t) and B(t) be an i.r.s.m. for every
t in the interval (,<t<t,. If dA(t)/dt exists for t,<t<t, and

.C%A(t) =B A®M) for L<t<t Alt) = A,

where A, 18 o r.g.s.m. with a multiplier p, then A(t) is @ r.q.s.m.
with the same multiplier p for any t in the interval tL,<t<t .
Proof. From

d -
5 Al) = B@) AQ)

we have
d

v AX(t) = AX(¢) B*(@®).
Hence

d _[a d
o {A*(t) JA(t)} = {-Jt—- AX(2) } JA(t) + A*(t)J—dE-A(t)

= AX(2) {B*(t)J + JB(t)} A®) for t<t<t.

Then by (8), we have

%—{A*(t)JA(t)} =0 for < t<t.
On the other hand, by (2) A*(¢&)JA(t)=A¢JA,=pJ. Hence A*(t)
JA(t)=pJ for t,<t<t q.e.d.

Lemma 2. Let X be a matriz of degree 2n with complex co-
effictents. If XB=BX for all i.r.s.m. B of degree 2n, then X is of
the form akF,,, where a is a complex number and FE,, is the unit
matriz of degree 2n.

Proof. A diagonal matrix

B 0
' Bn = R/
—ﬁl. B
0 "'- .
where g, ¢=1,...,n are real numbers such that 8,0 and B==%g;
for i=kj, is an i.r.s.m. by (4) and its diagonal elements are all

different between them. From B'X=XB', we can easily conclude
that X is a diagonal matrix.

A matrix
(Bl En )
=R

E. -Bf
where B, is any real matrix of degree n, is an i.r.s.m. by (4). If

we write
o
X= )
0 X,
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where X, and X, are diagonal matrices of degree n, the condition
B''X=XB' gives
X; = X'l Bx)(l = X,B,.

From the second of these formulas, we can conclude easily
that X, is a matrix of the form «F,, since B, is an arbitrary
real matrix of degree n. Then by the first of the above formulas,
we have X=akF,, where « is a complex number q.e.d.

Lemma 3. Let X be a regular real matrix of degree 2n. If
XBX™ is an i.r.s.m. for every i.r.s.m. B of degree 2n, then X is a
7.9.8.Mm.

Proof. Let B be any i.r.s.m. of degree 2n and let K denote
X*JX. Then

KBK™' = X*J(XBX ") J (X*)™*. (5)
By the assumption, XBX™! is an i.r.s.m. Hence by (8)
J(XBX™?) = — (XBX™)*J = — (X*)'B*X*J.
Putting this in (5), we have
KBK'!'= — B*,
On the other hand by (3)
JBJ ' = — B*,
Hence if we put L=J"'K=J"'X*JX, we have
LB = BL for any i.r.s.m. B of degree 2n.
Therefore by Lemma 2, L is of the form «F,, where « is a real
number as L is a real matrix. Then X*JX=aJ q.e.d.

3. We shall call a connected open set in R" a domain in R".

In the following, we denote by G a domain in RK**Yq,...,q.,
Piye.+yDuyt) and by G,, the set of the points (¢,...,q., P1y...,0.) Of
R* such that (¢y,...,9. D1y« .»00y ) € G. G, is open in R™ for any ¢.

Let M denote a one to one mapping

(ql’ e o ’q'il’pl! e e ’p'i"t)_>(Ql’ AR ,Q’"’Pl’ oo ’P’ﬁl’t) (6)
of G onto some domain in R*™*! such that Qg ;, t), Piy;, v, t) are
of class C* and the Jacobian 3(Q;, P;)/3(qs v») ==0 on G. For such
M we denote by M, the one to one mapping

(G0 ) > { Qula 21 ), Polas 5 )

depending on ¢ of G, onto some open set in R* (if G,==0).

We shall call M a pseudo-canonical transformation containing
the time (we abbreviate it as p.c.t.t.) with a multiplier p, if M,
satisfies the condition

n

p 2 ldpcdad = 3}dP.dQ] o G, (7)

=
for every ¢ such that G,==0 where p (5= 0) is a constant independent
of ¢;, pist. (Here [ ] means Cartan’s exterior product.) We shall
call a p.c.t.t. with the multiplier 1, a canonical transformation con-
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taining the time (we abbreviate it as c.t.t.).

We denote by M(p) the special p.c.t.t. with a multiplier p

(qu eeesQuyDry ... ’p'n’t)")(PQIy oo sPInsPry oo :pu’t)~

Then we can easily prove the following :

Lemma 4. Any p.c.t.t. M with a multiplier p can be represented
as M(p)M' where M' is a c.t.t.

We call a system of differential equations

dq, aH dp; 3H .

d‘i = 3, d’; = — ™ t1=1...,n (8)
a canonical system with a Hamiltonian H(q., p,,t), when H(q, pit)
is defined and of class C' and 3Hjaq;, 3H/dp; ©=1,...,n are of class
C* on a domain in R***%

Let M be a mapping of the domain G as defined in (6) and
the Hamiltonian Hiq,, p,, t) of (8) be defined in a neighbourhood of
a point (g%, p}, ") € G. If M transforms all the integral curves of
(8) in a neighbourhood of (qi, v}, ¢") into integral curves of another
canonical system

d 3K 3P, 3K .

BB =B islLon (9
with a Hamiltonian K(Q,, P,, t) defined in a neighbourhood of {@Q.(¢},
23, 1), Pdqj, 5, "), 1"}, then we say that M preserves the canonical
Jorm of (8) and transforms (8) into (9), in a neighbourhood of (g}, pi, ).
If M preserves the canonical form of every canonical system with
a Hamiltonian defined on a domain G' C G, in a neighbourhood of
every point belonging to G', then we say that M preserves the
canonical form (in G).

It is well-known that a c.t.t. and M(p) both preserve the
canonical form®. Hence by Lemma 4, a p.c.t.t. preserves the
canonical form. We shall prove the converse of this proposition
in the following.

4. Let (¢}, p5,%) be any point in the domain G and the
Hamiltonian H(q,,p;,t) of (8) be defined in a neighbourhood of (g%, p}, t°).
If (u,,v;) belongs to a neighbourhood in R* of(g}, ), then we have
a unique solution of (8), g:=@dt, u;,v)) Di=vYult, u;,v;) t=1,...,7n
defined for ¢ in a neighbourhood of ¢ such that w,=@J(t’, wy, v;) v.=
Vi, uz v;) t=1,...,n. We call such ¢,y the characteristic
functions of (8) at (¢}, ¢, ).

We denote by S(¢, us;, v;) the functional matrix of the mapping
T,: (e, v0) = {@pdt, us v5), Pult, uz,v5) }

Op: | 9
du; | vy
EAED

du; | vy
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By the assumption that 3H/3p,, aH/3q; are of class C', we can easily
prove the following ® :

Lemma 5.
3’H } ( G’H
( s _ ap«ag,H apzazng (10)
at /o AR N
<3Q¢a% ) ( 3¢.0p;

where (), means the value of a function for t—-t" u,=q}, v;=p4%o0r
for t=P, q;=q}, p:s=p3 according to its arguments.

Let M be a mapping of G as defined in (6). Now we assume
that M preserves the canonical form. Then, in a neighbourhood
of (¢% 9% t"), M transforms (8) into another canonical system (9)
with a Hamiltonian K(Q, P;,t) defined in a neighbourhood of {Q.(q},
15 ¥), Pdd} 05, t°),t'}. We put Qi=Qdq), v}, t") Pi=P(q}, v}, t").

If (U;, V.) belongs to a neighbourhood in K* of (Qf, P} and ¢
belongs to a neighbourhood of #°, then we can define the characteristic
functions of (9) at (Q%, P, ")

Q; = @i(t, Uj, Vj) P¢ = Qp.i(t, Uj, Vj) 1= 1, cee s M
as they are defined for (8) before.
We denote by &(¢, U,, V) the functional matrix of the mapping

To: (U, Vo) > {(ﬁi(t, U, Vo), ¥dt, U, V,.)}. Then by Lemma 5

(_acg = agg{%{) (a%:»%)" . (11)
o* ~(a&m)o "(a&fl),)o

where (), denotes the value of a function for t=#, U,=Q}, V,=
P? or for t=¢, Q;=Q%, P;=P) according to its arguments.
From the assumption that M transforms (8) into (9) in a
neighbourhood of (g3, p, ¢°), it follows easily that
MT.M(U,, Vi) = TU, V) (12)
for any (Ui, V,t) in a neighbourhood of (QS, P{, ).
Let us denote by N(¢, q;, p:) the functional matrix of the map-

ping M,: (9, p) = {Qi(g,-, 05, 0)y P, Di» t)}. Then by (12)

-1
Nt 0o p)St et {NE, @, )] =S¢, Py ()
for any ¢ in a neighbourhood of ¢°, where

¢ = @dt, 65, P D = Pult, 6§, D) .
If we differentiate both sides of (18) with respect to ¢ and
put ¢=¢°, then we have

_aél_zl‘)o (N)* + 42-1( ap¢) g, ) (V) 4-1 aq4) <ap¢> N
+ @0 (23) i = (2. ) (4)
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considering that ¢i=g¢; (£, ¢j, 1)) Di=+: (¥, q§, P}) and (3./dt),=(3H/
3P:)es (3Y:/3E),= —(3H|3¢s)s, (S),=FE..

In (14), the right side (3S/3¢), is always an i.r.s.m. by (11),
4). i}

If we take — Eaiqﬁ g}b‘p‘ as H, then (3H|3q.),= —a; (3H;3p.),
=b, and (3S/8t),=0 by (10). Hence by (14)

3N - 2 aIN - = 3N - 3

(_a"i“)o(N)"l + «Z.;b‘ 3q: )(. (N)™* + ga‘ "é})}”‘)o(N)"l “\at ‘)o
where a,;, b, are arbitrary real numbers. Hence (3N/3t),(N):',
(3NJ3g.), (N);', (3N/3p.), (N);* are i.r.s.m. From this by (14),
(N)(3S)8t), (N);* is always an i.r.s.m. and by (10) if we take a
suitable quadratic form in p;, ¢; as H, we can turn (3S/3f), into
an arbitrary i.r.s.m. Hence by Lemma 3, (N), is a r.q.s.m.

Thus we have proved that N(q.,p,t) is a r.q.s.m. and (3N;3t)N?,
(3N/ap,)N~', (3N/ag)N* are i.r.s.m. for any point (g, p.,t)€G.
From this we can prove easily that (dN/ds)N~! is an i.r.s.m. along
any curve ¢,=q4(s), p.=pds), t=1t(s) 8,<s<s in G with continuous
q«8), pi(s), t'(s). On the other hand N is a r.q.s.m. for any (¢, p:, t)
€ G. Hence by Lemma 1, Nis a r.q.s.m. with the same multiplier
along any such curve.

Since G is a domain, we can join any two of its points by a
polygonal line. Therefore N(q. p:,t) is & r.q.s.m. with the same
multiplier p for any (g., ., ¢) € G. This means by (1), (7) that M is a
p.c.t.t. Thus we have proved the following :

Theorem. Let M be a one to one mapping (g P: t) => (Qy Piy t)
of & domain G in R*™** onto some domain in R**' with Qq; ;5 1),
PAq;, 05, t) of class C* and with the Jacobian 3(Q:, P;)/3(qr, Pm) == 0
on G. M preserves the canonical form in G if and only if M is a
pseudo-canonical transformation containing the time.

By this theorem and Lemma 4, we have determined the form
of the transformations preserving the canonical form of the equa-
tions of motion.
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