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113. On the Transformations Preserving the Canonical
Form o the Equations o Motion

By Takashi KASUGA
Department of Mathematics, Osaka University

(Comm. by Ko KUNUGI, MoJoAo, Nov 12, 1953)

Introduction. In this paper, we shall prove that any trans-
formation preserving the canonical orm of the equations o motion
can be composed of a canonical transformation and a transforma-
tion of the form Q,=q,, P,=p =1,...,n where p=0 is a constant.
(For the precise ormulation, see section 3, 4.)

For the sake of completeness, we shall prove first some lemmas
on matrices which will be used later.

1. We shall call a real regular matrix A of degree 2n, a real
quasi-symplectic matrix (we abbreviate it as r.q.s.m.) with a mul-
tiplier , if

for two arbitrary vectors (x,...,,), (y,...,92,), where p is a real
number and

1 1 Yl Yl

A r.q.s.m, with the multiplier 1 is called a real symplectic matrix
(we abbreviate it as r.s.m.). A real regular matrix A of degree
2n is a r.q.s.m, with a multiplier p if and only if

J A* JA (2)
where A* is the transposed of A and

J= (E,, is the unit matrix of degree n).
-E,, 0

From (2), a multiplier of a r.q.s.m, is a non-vanishing real number.
A real matrix B of degree 2n is called an ifinitesimal real

symplectic matrix (we abbreviate it as i.r.s.m.), if
JB + B*J=O. (3)

If we write a real matrix B of degree 2n in the form

B=( BBs B,B)
whoro Bx, B, B, B aro marieos of degree n, hon B is an i.r.s.m.
if and only if

B, B, Bt, B, Bt.
2. Lemma 1. Let A(t), B(t) be real matriees of deeree 2n de-
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pending on a parameter t (t_t) and B(t) be an i.r.s.m, for every
t in the interval ttt. If dA(t)/dt exists for t_t_t and

d_ A(t) B(t) A(t) for to t t A(to) = Ao
where Ao is a r.q.s.m, with a multiplier , then A(t) is a r.q.s.m.
with the same multiplier for any t in the interval tott.

Proof. From

A(t) B(t) A(t)dt
we have

Hence

A*(t) A*(t) B*(t)dt

d
dt { A*(t) JA(t)} {ff--A*(t)}JA(t)+ A*(t)J.A(t)

A*(t){B*(t)J + JB(t)} A(t) for t,tt,.
Then by (8), we have

On the other hand, by (2) A*(to)JA(to)=AJAo=pJ. Hence A*(t)
JA(t)=J for ttt q.e.d.

Lemma 2. Let X be a matrix of degree 2n with complex co-
ecients. If XB=BX for all i.r.s.m. B of degree 2n, then X is of
the form aE,,, where a is a complex number and E, is the unit
matrix of gr 2n.

Proof. A diagonal matrix

B,, B-&

where B, i=l,...,n are real numbers such that N+0 and
for i+j, is an i.r.s.m, by (4) and its diagonal elements are all
different between them. From BX=XB, we can easily conclude
that X is a diagonal matrix.

A matrix

(BE")=B,,E,, -B
where Bt is any real matrix of degree n, is an i.r.s.m, by (4). If
we write
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where X and X are diagonal matrices of degree n, the condition
BX=XB gives

x x, B,X, X,.
From the second of these formulas, we can conclude easily

that X is a matrix of the form E,., since B is an arbitrary
real matrix of degree n. Then by the first of the above formulas,
we have X=eE,, where e is a complex number q.e.d.

Lemma 3. Let X be a regular real matrix of degree 2n. If
XBX-1 is an i.r.s.m, for every i.r.s.m. B of degree 2n, then X is a
r.q.s.m.

Proof. Let B be any i.r.s.m, of degree 2n and let K denote
X*JX. Then

KBK- X*J(XBX-1)J-(X*)-. 5
By the assumption, XBX- is an i.r.s.m. Hence by (3)

J(XBX-) (XBX-)*J (X*)-B*X*J.
Putting this in (5), we have

KBK-1 B*
On the other hand by (3)

JBJ- B*
Hence if we put L=J-K=J-X*JX, we have

LB BL for any i.r.s.m. B of degree 2n.
Therefore by Lemma 2, L is of the form E,, where a is a real
number as L is a real matrix. Then X*JX=J q.e.d.

3. We shall call a connected open set in R a domain in R’.
In the following, we denote by G a domain in /’*/(q,...,q,.,

p,...,p,, t) and by G,, the set of the points (q,...,q,., p,...,p,,) of
R" such that (q,...,q,, p,...,p,,, t) e G. G, is open in R’ for any t.

Let M denote a one to One mapping

(ql, ,q,.,p, ,p,,,,t) (Q1, ..., Q,,P, ,P,t) (6)
of G onto some domain in R’’+ such that Q(q, p, t), P,(q, ps, t) are
of class C and the Jacobian (Q,:, P)/(q, p,,)=0 on G. For such
M we denote by M, the one to one mapping

(q,, P,) IQ,,(qs, Ps, ’), P,(q,, ps,

depending on t of G, onto some open set in R’*(if G,- 0).
We shall call M a pseudo-canonical ransformation containing

the time (we abbreviate it as p.c.t.t.) with a multiplier p, if M,
satisfies the condition

for every t such that G 0 where p ( 0) is a constant independent
of q,,p,,t. (Here [ ] means Cartan’s exterior product.) We shall
call a p.c.t.t, with the multiplier 1, a canonical transformation con-
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taining the time (we abbreviate it as c.t.t.).
We denote by M() the special p.c.t.t, with a multiplier
(q q,, p p,, t) (pq pq,, p p, t)

Then we can easily prove the following:

Lemma 4. Any p.c.t.t. M with a multiplier p can be represented
as M(p)M where M is a c.t.t.

We call a system of differential equations
dq,. OH dp, OH i= 1, n (8)
dt Op dt Oq

a canonical system with a Hamiltonian H(q, p, t), when H(q, p,, t)
is defined and of class C and H/Oq,, OH/Op, i--1,...,n are of class
C on a domain in R’+.

Let M be a mapping of the domain G as defined in (6) and
the Hamltonian H(q,, p,, t) of (8) be defined in a neighbourhood of
a point (q, p, t") e G. If M transforms all the integral curves of
(8) in a neighbourhood of (q, p, t") into integral curves of another
canonical system

dQ K )P, K i---1 n (9)dt OP dt- oQ, ’’"
with a Hamiltonian K(Q, P, t) defined in a neighbourhood of {Q,(q,
p, t), P,(q, p, t), t}, then we say that M preserves the canonical

form of (8) and transforms (8) into (9), in a neighbourhood of (qo p, t).
If M preserves the canonical form of every canonical system with
a Hamiltonian defined on a domain Gt G, in a neighbourhood of
every point belonging to G, then we say that M preserves the
canonica form (in G).

It is well-known that a c.t.t, and M(p) both preserve the
canonical form ). Hence by Lemma 4, a p.c.t.t, preserves the
canonical form. We shall prove the converse of this proposition
in the following.

4. Let (q,,p,t) be any point in the domain G and the
Hamiltonian H(q,,p,,t) of (8) be defined in a neighbourhood of (q, p, t).
If (u,, v,) belongs to a neighbourhood in/’’ of(q, p), then we have
a unique solution of (8), q=q(t,u.,v) p-dt, u,v) i----1,...,n
defined for t in a neighbourhood of t such that
@,(t, u, v) i=l, ..., n. We call such q, , the characteristic
functions of (8) at (, p, t).

We denote by S(t, u, v,) the functional matrix of the mapping
T, (u,, v,) {q,(t, u, v), @,(t, u, v) }
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By the assumption that H/p, H/Oq, are of class C, we can easily
prove the following"

Lemma 5.

aq,ap
where ( ) means the value of a function for
for t=t, q,=q, p,=p according to its arguments.

Let M be a mapping of G as defined in (6). Now we assume
that M preserves the canonical form. Then, in a neighbourhood
of (q, p, ), M transforms (8) into another canonical system (9)
with a Hamiltonian K(Q,, P,, t) defined in a neighbourhood of
p), if), P,(, p, t), t} We put Q=Q,(q, p, t) -P,(q), , t).

If (U, V) belongs to a neighbourhood in
belongs to a neighbourhood of , then we can define the characteristic
functions of (9) at (Q, , )

Q, P,
as they are defined for (8) before.

We denote by (t, U,, V) the functional matrix of the mapping

" (U, V) ,(t, U, V), (t, U, V)}. Then by Lemma 5

a x aPQ]o ( aP,- g (11)()= ( aQ,aQ )o -( ’)oaP
where )o denotes the value of a function for

or for t=t Q,=Q, P= according to its arguments.
From the assumption that M transforms (8) into (9) in a

neighbourhood of (q, p, t), it follows easily that
M,T,M(U,, L)= ,(U,, L) (12)

for any (U, V,., t) in a neighbourhood of (Q,Pi, t).
Let us denote by N(t, q,, p,) the functional matrix of the map-

M," (q,, p,) { Q,(g, p, t), P,(q, p, t)[ Then by (12)ping

N(t, q, )S(t, q, ) N(t", , ) (t, , ) (18)

or ny t in neighbourhood of t", where

If we differentiate both sides of (13) with respect to t and
put t=t, then we have

aN aH aN aH

as a+ (N)()o(N)= (--at--)o’ (14)
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considering that q----q.,(t, q, p) p=@,(t, qO, p) and (q,/Ot)o--(OH/
Op,)o, (@,/t)=-(OH/q,)o, (S).=E=,,.

In (14), the right side (O/Ot),, is always an i.r.s.m, by (11),
(4).

If we take a,q + bp as H, then (H/3q.,)q=

=b and (S/t)o=O by (10). Hence by (14)

where a, b are arbitrary real numbers. Hence
(N/q),,(N);, (SN/p,)o(N); are i.r.s.m. From this by (14),
(N)o(OS/Ot)o(N); is always an i.r.s.m, and by (10) if we take a
suitable quadratic form in p, q, as H, we can turn (OS/t)o into

an arbitrary i.r.s.m. Hence by Lemma 3, (N)o is a r.q.s.m.
Thus we have proved that N(q,p,,t) is a r.q.s.m, and (ON/t)N-,

(ON/Op.)N-, (N/q)N- are i.r.s.m, for any point (q,, p,, t) e G.
From this we can prove easily that (dN/ds)N- is an i.r.s.m, along
any curve q,=q,(s), p=p,(s), t=t(s) s,}ss in G with continuous
q(s), p(s), t(s). On the other hand N is a r.q.s.m, for any (q,, p,, t)
e G. Hence by Lemma 1, N is a r.q.s.m, with the same multiplier
along any such curve.

Since G is a domain, we can join any two of its points by a
polygonal line. Therefore N(q, p.,, t) is a r.q.s.m, with the same
multiplier p for any (q, p, t) G. This means by (1), (7) that M is a
p.c.t.t. Thus we have proved the following:

Theorem. Let M be a one to one mapping (q,, p,, t) (Q,, P, t)
of a domain G in R’+ onto some domain in R’+ with Q(q, p, t),
P,(q, p.;, t)of class C and with the Jacobian O(Q,,P)/o(q, p)O
on G. M preserves the canonical form in G if and only if M is a
pseudo-canonica tranormation containi the time.

By this theorem and Lemma 4, we have determined the form
of the transformations preserving the canonical form of the equa-
tions of motion.
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