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F.J. Murray and J. von Neumann investigated that under
what conditions the algebraical isomorphism of two factors implies
the spatial isomorphism of them. They have many monumental
results in the case of types I and II. The object of this paper is
to show that the algebraical isomorphism implies the spatial iso-

morphism in the case of type III.
1. In this paper, we consider only separable Hilbert spaces.

Let il be a weakly closed self adjoint operator algebra with the
identity on a separable Hilbert space and be the commutor
of it. is called a factor if 1 r contains only scalar multiples
of the identity. We say that the projections P and Q of 1 are
equivalent, written P-Q, if there exists an element V such that
VV*=P and V*V=Q. A projection P is called finite if P-Q
and PQ imply P--Q, otherwise infinite. According to F.J.
Murray and J. yon Neumann, a factor 1 will be said of type
III if any non-zero projection of I is infinite. Let l be a factor
of type III, then all non-zero projections are equivalent each other.
By [Ix] we mean the closed linear manifold which is a closure of
a manifold [Ax lA ,I] for any vector x in . Notice that the pro-
jection on [Ix] is contained in

A bounded linear functional on an operator algebra 1 is

called a state if o.(A*A)O for any AeI and (I)=l where I
is the identity of il. A state is called complete provided that
,r(A*A) 0 implies A---0. We shall say that a state is count-
ably additive if a(-2 P,) ] (P,,) for any sequence {P,,,} of mutually
orthogonal projections. Let x be a vector with unit norm, then
it is clear that a(A)=(Ax, x) is a countably additive state.

2. In this section we shall show two lemmas.
Lemma 1. Let be a factor of type III on a Hilbert space

0, then there exists a vector x in such that [Ix] -[x]
Proof. Let x be any vector and P be the projection on

[ilx]. Then P is a non-zero projection in 02 and therefore /-I
since I is of type III. Hence, there exists a partially isometric
operator Vin ?1 such that V*V--P and VV*=L Put x=V,
then

[’x] [’ yx] vtl,x]
Let Q be the projection on [92x], then Q is a non-zero projection
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in I. Since I is of type III too, we have Q--I in /. There-
fore, there exists a partially isometric operator W in / whose
initial and final projections are Q and I respectively. Put
Wx, then W*x=x. Therefore,

and

< w,x] <
Thus, we have [92x] [lx] = .. This proves the lemma.

Lemma 2. Let P and Q be projections in a factor which
are equivalent each other. Then the contraction of I on the
range of P is unitary equivalent to the contraction of l on the
range of Q.

Proof. Let and be the ranges of P and Q respectively,
and the contractions of ’)/ on and 9 will be denoted by / and
/ respectively. It is well known that there exists a one-to-one
correspondence between / and P 92 P.

Now we shall prove that PIP and Q/Q are algebraically
isomorphic. By the assumption, there exists an element
with VV*=P and V’V= Q. We shall define a mapping by

4’ (PAP) V*PAPV,
then 9 is a mapping from PIP into Q?I Q since

V’PAPAV V* VV*AVV* V QV*A VQ.
Moreover, we have

Q Q V* VV* VV*VV* V V*PV1[ V*PV V*P 9.1 PV,
and this implies that 9s is a mapping from P g.I.P onto Q /Q. Let
VPAPV* 0, then

0 V* VPAPV*V PAP,
that is, 9s is an algebraically isomorphic mapping.

Finally, V is a partially isometric operator whose initial and
final domains are 21 and 9l respectively. From above considera-
tions, it is clear that 9A is unitary equivalent to /. This proves
the lemma.

Remark. It is excessive for Lemma 2 that ?I is a factor.
Lemma 2 is true for any weakly closed self adjoint operator
algebra on a (not necessarily separable) Hilbert space.

8. Now we shall prove the following theorem:

Theorem. Let P2 and be factors of type III on Hilbert
spaces (C) and , respectively. Moreover, /t is algebraically iso-
morphic to ,, then ?I is unitary equivalent to /.

Proof. By Lemma 1, there exists a vector ya(C) such that
[/;y] =(C). Then Ay= 0 implies A=0 for Ae I. For any
Aa / we put

o., (A’) (Ay, yx)
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then a is a complete ountably additive state. Now we shall
define a complete countably additive state on I as following"

(B) (B) for every B e I,
where B is a corresponding element in I to B. By a theorem
due to H.A. Dye [Theorem 1], there exists a non-zero projection
P and a vector y e which satisfies

o.(PAP) = (Ay, y) for any A.
Let P be a projection in which corresponds to P. Then, by
Lemma 2, I, is unitary equivalent to the contraction !D of I, on
the range !), of P, since P is equivalent to the identity of 2,
(i 1, 2). Therefore, it is sufficient to show that ! and !O are
unitary equivalent each other.

Clearly, !D is algebraically isomorphic to . Denote elements
of by A t), B), and corresponding elements of by A), B(),

If we put Pyt =z, then [!D;z]= !l is obvious. Accord-
ingly, the state r on which is defined by

.r (A)) (A()y y),
is considered as the restriction of a on PgAP. By an analogous
way to Lemma 1, there exists a partially isometric operator V in
92 such that

[PPx] [PiPx] .
Furthermore, for any AeA,

o’1 (PAP) (Az, z;) (A’V*x V*x) (Ax x) (PAPx,x,).
This shows that

r (A() (A(x, x).
By the definitions of P and y, we can prove that xiI and
[ly] is the range of P. In other words, [y]=!l. By an
analogous way to the preceding, there exists a vector x. in
such that [x] [x] !l and the restriction of on 2 is

(A()) (A(’) x, x).
Therefore, we have

(A(’)) (A()).
Finally, it is obvious that A()x--) AC)x is an isomorphic

mapping from the dense manifold of J to the one of !). There-
fore this mapping is uniquely extended to a unitary mapping U
from !I onto . And

(U*A<) UBI)z B)x) (A() Bi)x B)x) (A(D BiDx, B’) x),
that is, ! is unitary equivalent to . This proves the theorem.

This theorem is stated as following in the terminology .of
F.J. Murray and J. yon Neumann).

Corollary. The spatial type of a factor of type III is uniquely
determined by the algebraical type of it.

Remark. The theorem is still- true for the non-factor case.
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The detailed proof will be appeared in elsewhere.
An analogous theorem was announced by E. L. Griffin.
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