548 [Vol. 29,

125. Notes on Some Theorems on the Sphere

By Shin'ichi Kinoshita

Department of Mathematics, Osaka University (Comm. by K. Kunugi, M.J.A., Dec. 14, 1953)

Borsuk²⁾ proved that if f is a continuous mapping of the n-dimensional sphere S^n into the n-dimensional Euclidean space E^n , then f maps some pair of antipodal points into a single point, which had been conjectured by Ulam. This Borsuk-Ulam theorem has been extended by Tucker⁴⁾ such that if f is a continuous mapping of S^n into itself with the degree 0, then f maps some pair of antipodal points into a single point. In this note in §1 we shall have an extension of these theorems.

Borsuk²⁾ proved also that if S^n is covered by n+1 closed sets, then at least one of them contains an antipodal pair, which is now called the theorem of Lusternik-Schnirelmann-Borsuk. In § 2 we shall have an extension of this theorem and a consequence of this extension.

§ 1. Now we prove the following:

Theorem 1. Let f be a continuous mapping of Sⁿ into itself. If f has an even degree, then f maps some pair of antipodal points into a single point.

Proof. Assume that S^n is the unit sphere in E^{n+1} . Let f be a continuous mapping which satisfies the condition of Theorem. Suppose on the contrary that $f(x) \neq f(x^*)$ for every $x \in S^n$, where x^* is the antipodal point of x. Using vectorial notation, put

$$g(x) = \frac{f(x) - f(x^*)}{|f(x) - f(x^*)|}$$
.

Then g is a continuous mapping of S^n into itself. Since

$$g(x^*) = \frac{f(x^*) - f(x)}{|f(x^*) - f(x)|} = -g(x)$$

for every $x \in S^n$, g maps antipodal points of S^n into antipodal points of S^n . Therefore g has an odd degree by a theorem of Borsuk²⁰.

Now we shall prove that |f(x)-g(x)| < 2 for every $x \in S^n$. Since from this fact it follows that g will be homotopic to f and that g will have the same degree to that of f (i.e. an even degree), we shall have a contradiction, and the proof of Theorem will be complete.

To prove that |f(x)-g(x)| < 2 for every $x \in S^n$, suppose on the contrary that there exists a point $p \in S^n$ with |f(p)-g(p)|=2. Then we have

$$f(p) = -g(p) = -\frac{f(p)-f(p^*)}{|f(p)-f(p^*)|}$$
.

Therefore

$$f(p^*) = (1 + |f(p) - f(p^*)|)f(p)$$
.

Since $|f(p)| = |f(p^*)| = 1$, we have $|f(p) - f(p^*)| = 0$. Then $f(p) = f(p^*)$, which is a contradiction, and the proof is complete.

§ 2. Now we prove the following:

Theorem 2. Let $F_i(i=0,1,\ldots,n)$ be n+1 closed subsets of S^n with $\bigcap_{i=0}^n F_i = 0$. Then there exists a point $p \in S^n$ such that $p \in F_i$ if and only if $p^* \in F_i$.

Proof. Let a_0, a_1, \ldots, a_n be linearly independent points in E^n . Put

$$f_i(x) = d(x, F_i)$$
 $(i = 0, 1, ..., n)$

 $f_i(x)=d(x,F_i) \qquad (i=0,1,\ldots,n)$ for every $x\in S^n$. Since $\bigcap_{i=0}^n F_i=0$, for each $x\in S^n$ there exsists

an
$$i$$
 with $f_i(x)>0$. Using vectorial notation, put
$$g(x)=\frac{1}{\sum_{i=0}^n f_i(x)}\left(f_0(x)a_0+f_1(x)a_1+\cdots+f_n(x)a_n\right).$$

Then g is a continuous mapping of S^n into E^n . By the theorem of Borsuk-Ulam there exists a point $p \in S^n$ with $g(p) = g(p^*)$. Then we have

$$\frac{1}{\sum_{i=0}^{n} f_{i}(p)} \left(f_{0}(p)a_{0} + f_{1}(p)a_{1} + \cdots + f_{n}(p)a_{n} \right) \\
= \frac{1}{\sum_{i=0}^{n} f_{i}(p^{*})} \left(f_{0}(p^{*})a_{0} + f_{1}(p^{*})a_{1} + \cdots + f_{n}(p^{*})a_{n} \right).$$

Therefore

$$\frac{f_i(p)}{\sum_{i=0}^n f_i(p)} = \frac{f_i(p^*)}{\sum_{i=0}^n f_i(p^*)} \qquad (i = 0, 1, \dots, n)$$

and then

$$f_i(p) = cf_i(p^*)$$
 $(i = 0, 1, ..., n)$,

where c is a non-zero constant. It follows that $f_i(p)=0$ if and only if $f_i(p^*)=0$. Then $p \in F_i$ if and only if $p^* \in F_i$, and the proof is complete.

Putting as F_0 the empty set in Theorem 2, we have the following:

Theorem 3. Let $F_i(i=1,2,\ldots,n)$ be n closed subsets of S^n . Then there exists a point $p \in S^n$ such that $p \in F_i$ if and only if $p^* \in F_i$.

Remark. Tucker 4) has proved that the Borsuk-Ulam theorem, his fundamental non-existence theorem, his covering theorems on the sphere etc. form an equivalent system. It is easy to see that our Theorems 2 and 3 also are contained in this equivalent system.

References

- 1) P. Alexandroff-H. Hopf: Topologie, 1 (1935).
- 2) K. Borsuk: Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math., 20 (1933).
 - 3) S. Lefschetz: Introduction to topology (1949).
- 4) A. W. Tucker: Some topological properties of disk and sphere, Proc, Cana. Math. Cong., Montreal (1946).