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97. An Observation on the Brown-McCoy Radical

By F. SzAsz

Mathematical Institute of Academy of Science, Budapest
(Comm. by K. KUNUGI, M.J.A., July 12, 1961)

We wish to characterize in this note the Brown-McCoy radical
G(A) of an associative ring A, as a radical (1, 1, 1, 1)(4), (1, 1, 1, 0)(4),
1,1,0,1)(A) and (1, 2,1,1)(A), respectively, where (k,1, m, n)(A) is a
well-defined special F-radical of the ring A in the sense of Brown-
McCoy [3] for arbitrary nonnegative integers k, [, m and n. The
concept of a (k, !, m,n)-radicalring A can be illustrated by the fol-
lowing elementary remarks. If the elements of A form on the
operation aob=a-+b—ab(a,becA) a Neumann-regular semigroup (for
instance in the case of a Jacobson-radicalring A, when (4,0) is a
group), then A is a (k, 0, 1, 1)-radicalring and a (0, !, 1, 1)-radicalring
‘at the same time for any integers k,1=0. Furthermore any (k,!,
m, n)-semisimple ring A with minimum condition on twosided prin-
cipal ideals is, as an (A, A)-doublemodule, completely reducible in a
weak meaning, which generalizes the classical Wedderburn-Artin
structure theorem also. (For the details of radicals, see [1], [2], [3].)

In this note the knowing of the results of Brown-McCoy [3] will
be assumed for the reader. We denote the sum of all twosided prin-
cipal ideals (@™ ozoa™—k-a®’) by (k,l, m,n)(a), where a is a fixed
element, X a varying element of A, acb=a-+b—ab, a®=0, a¥=a,
a**P=aq%®oq and k,l, m, n are nonnegative integers. An element
acA is called (k,l, m, n)-regular, if ac(k,l, m,n)(@). We call an ele-
ment acA strictly (k,l, m, n)-regular, if any element b of the two-
sided principal ideal (a) generated by a is (k,1, m, n)-regular. The
set (k,1, m,n)(A) of all strictly (k,l, m, n)-regular-elements of A is
called the (k, [, m, n)-radical of A. This is evidently a special F-
radical of A[3]. The rings with (k, 1, m, n)-radical (0) are called
(k, 1, m, n)-semisimple. We call a subdirectly irreducible (k,!, m, n)-
semisimple ring A shortly: (k,l, m, n)-primitive. An element a=-0
with the condition (k,1, m,n)(a)=0 is called here a (k,1I, m,n)-
distinguished element of A. By [3] the (k,!, m, n)-radical of A is
the intersection of such ideals ¥, (yel') of A, that the factorrings
A/Z, are (k,l, m,n)-primitive. A/(k,l, m,n)(A) is (k, !, m, n)-semi-
simple, and a subdirect sum of (k, [, m, n)-primitive rings. By [3] a
subdirectly irreducible ring A is (k,l, m, n)-primitive if and only if
the minimal ideal D30 of A contains a (k, [, m, n)-distinguished ele-
ment d=-0 playing the role of unity element in the case of radical
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1,1,1,1)(4)=G(A) of A.

Then holds the following

Theorem. An arbitrary (k, 1, m, n)-primitive ring P has no
proper twosided ideals, and we have (1—d™)P(1—d”)=0, d=kd-d®,
kd®=d‘™*™ for a (k, 1, m, n)-distinguished element d(3=0) of P. Fur-
thermore G(4)=(1,1,1,1)(4)=(1,1,1,0)(4)=@1,1,0,1)(4)=(1,2,1,1)
(A) are valid for the Brown-McCoy radical G(A) of an arbitrary
(associative) ring A.

Proof. If P is (k,l, m,n)-primitive, then there exists [3] a (&,
l, m, n)-distinguished element d=-0 in the minimal ideal ©0 of P.
We have from (k, 1, m,n)(d)=0 evidently d™oxod”=k-d® for any
xzeP. In the special case X=0 follows d™*™=kd" and thus in the
case of arbitrary xeP is X=d™.x+ad™—d™zd™ecD valid. There-
fore one has P=9 for the (k, 1, m, n)-primitive rings P, and thus P
cannot have proper twosided ideals. Obviously follows also (1—d™)
P1—d™)=0,d=d-d™*™ and d=kd-d® respectively. Let A be now
an arbitrary assoctative ring. Then (1,1, 1, 1)(A)=G(A) will be proved
by showing, that any (1,1, 1,1)-primitive ring P is a simple ring
with unity element, and a similar fact holds for other special k, I,
m, n mentioned in the above theorem. In the four cases k,[, m, n
mentioned above, k=1, hence d=d-d® and d¥=d*™. If l=m=mn
=1, then one has d?=d for the (k,I, m, n)-distinguished element
d3-0 of the (k,l, m, n)-primitive ring P. By (1—d)P(1—d)=0 follows
C=(1—-d)P+P(1—d)P=0, since P is by d*=d--0 semi-simple in the
sense of Jacobson, and the ideal C is nilpotent. Thus (1—d)P=0,
P=dP (d*=d) and similarly P=Pd too. Therefore one has (1,1,1,1)
(A)=G(A). If k=l=m=1 and »=0, immediately follows

1,1,1, 0)(a) =§A(aoxoa“”—a):%;(X—ax):(l-—a)A+A(1—a)A,
and thus (1,1, 1, 0)(4)=G(A) by the definition of the Brown-McCoy
radical G(A) of A [3]. The case k=Il=n=1 and m=0 is totally
similar to the previous case. If k=m=n=1 and =2, then one has
d=d-d® and thus d—2d?*+d®*=0. Then by d=2d*—d?®3-0 is surely
P20, i.e. P is semisimple in the sense of Jacobson by the want of
proper ideals. By (1—d)P(1—d)=0 and P?30 follows C=(1—d)P
+P(1—d)P=0, since C is a nilpotent twosided ideal of P. This means
(1—d)P=0 and P=dP. From (d—d*)P=(1—d)dP=0 follows by P?
20 evidently d*=d, for a Jacobson-semisimple ring we have no annul-
lator =0. Therefore d is a left unity element of P(=dP), and
similarly one has P=Pd also, which proves the theorem.

Remarks. 1) Any (k,l, m, n)-semisimple ring with minimum
condition on twosided principal ideals is the discrete direct sum of
(k, 1, m, n)-primitive rings (see for these rings the above theorem),
and conversely.
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2) If the elements of A form with the operation acb=a-+b—ab
a Neumann-regular semigroup, then A is a (%, 0, 1, 1)-radicalring and
a (0,1, 1, 1)-radicalring too.

3) It can be proved 4=(0,0, 0, 0)(4)=(k, 0, 0, 1)(A)=(0, ¢, 0, 1)(4)

=(k,0,1,0)(A4)=(0,1,1,0)(4)=(2,1,1,0)(4)=(2,1,0,1)(4)=(2,1,1,1)
(A).
For instance, if P is a (2, 1, 1, 1)-primitive ring, then holds d‘®=2d"
and (1—d)P(1—d)=0, consequently 2d—d?*=2d, d*=0 and 0d=d
—2d*+d*=(1—d)d(1—d)e(1—d)P(1—d)=0, which is a contradiction.
Therefore P=0 and (2,1,1,1)(4)=A.

4) Any (k, 0,1, 1)-primitive ring P and any (0,1, 1, 1)-primitive
ring P are simple rings with unity element and with the condition
2P=P=0.

5) Any (3,1,1,1)-primitive ring, any (8,1, 1, 0)-primitive ring
and any (3,1, 0, 1)-primitive ring P are simple rings with unity ele-
ment and with the condition 2P=0. Therefore for example a (3,1,
1, 1)-primitive ring P=-0 cannot be for instance a (0,, 1, 1)-primitive
ring.

6) We have seen (1,2,1,1)(A)=G(4). Then holds (1,2,1,1)(a)
=((1—-a)A(1—a))=(1—a)A(l—a)+ A1l—a)A(1l—a)+(1—a)A(1—a)A
+A(1l—a)A(1—a)AD2 W(a)=A(1—a)A(1—a)A. The following W-reg-
ularity: be W(b) determines a special F-radical W(A) of A. If P is
a W-primitive ring t.e. a W-semisimple and subdirectly irreducible
ring, and if P®3-0, then P is a simple ring with unity element. If
P is a W-primitive ring and if P?*=0, then the additive group P*
is isomorphic to a group C(p*), where 1<k<oo. If finally P?2-0 but
P3?=0, and P is a W-primitive ring, then we have PQ=9P=0 for
the minimal ideal © of P and (P*)*=C(p*) holds (1<k< ). For
example A={a,, a, ---;b,, b, - - -} with a}—b,=pa,=b,—pb,,,=a,a,=a;
=0 is a W-primitive ring with A*=0 and 4?30, (4%)*=C(p~) (+=7).

T7) Let A be an associative ring, M a right A-module and M
an arbitrary cardinal number. An A-submodule K of M is called M-
homoperfect, if the following conditions are satisfied:

1) MA+K=M;

II) M/K is a completely reducible A-module of dimension <IR;

III) M/K has no proper A-submodule, which is invariant for all
A-endomorphism of M/K;

IV) if ¢ is an A-homomorphism of M/L onto M/K for an A-
submodule L with the conditions I), II) and III), then ¢ is an isomor-
phism.

Let %,(M) be now itself M, if M has no proper M-homoperfect
submodules. If there exist in M proper M-homoperfect submodules
K,(reI'), then we define %, (M)=K,. In the case of 1c¢ A, a unitary
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A-module M and M=2; R, (M) is the Bourbaki-radical of M [2], and
in the case M=2 and arbitrary A we obtain the Kertész-radical
of M [5]. We have proved solving in [6] a problem of Dr. A.
Kertész [5] that the Jacobson-radical F(A) of A must not coincide
with the radical ®,(4) of the right A-module 4, if the power |A|
of A is no quadratfree finite cardinal number. We have generally
only R,(A)=&(4). If in the ring A with left unity element holds
the minimum condition on principal right ideals [7] and M= %,, then
one has evidently 3. (4)= G(A) for the above radical ®,(A4) of the
right A-module A and the Brown-McCoy radical G(A) of 4.* Now
we arise the following

Problem. What is a necessary and sufficient condition concern-
ing A for the validity of RNk, (4)=G(A)? (Solve a similar problem
of A. Kertész on Ry(A) and F(A) too!)
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* It may be remarked that the theory of F-radicales can be formulated for A-
modules too, where F' is a well-defined mapping of any A-module M onto a set of
submodules F'(m) of M (m €M, F(m)SM) with the condition F(m)p=F(m¢e) for any A-
homomorphism ¢ of M. Then m €M is F-regular in the case m & F(m). Then the F-
radical of M is the set (m; me M, neF(n), ne{m}].



