223. On Imbeddings and Colorings of Graphs. I

By Gikō Ikegami
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1967)

§ 1. Introduction. A graph G is an ordered pair (G^{0}, G^{1}), where G^{0} is a nonempty finite set of objects and G^{1} is a set of unordered finite pairs of the elements of G^{0}, where G^{1} can contain some pairs of the same elements of G^{0}. The objects in G^{0} and G^{1} are called vertices and arcs of the graph G, respectively.

For two graphs $G=\left(G^{0}, G^{1}\right)$ and $H=\left(H^{0}, H^{1}\right), H$ is called a subgraph of G and noted by $G \supset H$, if $G^{0} \supset H^{0}$ and $G^{1} \supset H^{1}$.

We can realize any graph by an 1-dimensional complex, where we assume that an arc is an open 1 -simplex in the complex. A graph is connected when it is connected as a complex. In this paper, a graph implies a connected graph.

A subset δ of G^{0} is called $S C$-set (same-colorable set), if for any two vertices A and B in δ, the pair (A, B) is not contained in G^{1}.

A graph $G=\left(G^{0}, G^{1}\right)$ is n-colorable if such n SC-sets $\delta_{1}, \cdots, \delta_{n}$ exist as $G^{0}=\delta_{1} \cup \cdots \cup \delta_{n}, \delta_{i} \neq \phi$ and if $i \neq j \delta_{i} \neq \delta_{j}$ for $i, j=1, \cdots, n$.
G is n-chromatic (or the chromatic number of G is n), if G is n-colorable but not n^{\prime}-colorable for any $n^{\prime}<n$.

The definition of n-colorable graphs in this paper is distinct from the one in [3],*) but the definitions of n-chromatic graphs in this paper and in [3] are equivalent.

In this paper a surface means a differentiable or combinatorial closed 2-manifold and an imbedding of G into a surface M means differentiable or piece-wise linear one, regarding G as a complex. For definition of differentiable map of complex, see, for example, [2].
G can be imbedded in some orientable surface having enough large number of genus. G is m-imbeddable if it can be imbedded in an orientable surface having genus m, and is minimal m-imbeddable if it can be m-imbeddable but not ($m-1$)-imbeddable. It is said that the genus of G is m if G is minimal m-imbeddable.
§ 2. An imbedding theorem. To express an imbedding of G into a surface M or the imbedded subspace of M, we use the notation $G(M)$. An imbedding $G(M)$ is said to be simplest if $\chi(M) \geqq \chi(N)$ for any imbedding $G(N)$, where $\chi(M)$ is the Euler characteristic of M. If any connected component of $M-G(M)$ is open 2-cell, $G(M)$ is said to be 2-cell imbedding.

[^0]For a component α of $M-G(M)$ and an arc a of $G(M) \cap B d \alpha$, where $B d \alpha$ is a boundary of α, a function $l(a, \alpha)$ is given by,

$$
\begin{aligned}
l(a, \alpha)=1, & & \text { if } \operatorname{In}(\mathrm{Cl} \alpha) \not \supset a \\
=2, & & \text { if } \operatorname{In}(\mathrm{Cl} \alpha) \supset a .
\end{aligned}
$$

Then, α is said to be l-gon when $l=\sum_{a \in \mathrm{Cl} \alpha} l(a, \alpha)$.
$G(M)$ is said to be l-gon imbedding, if (i) $G(M)$ is a 2 -cell imbedding, (ii) any component of $M-G(M)$ is a l-gon, and (iii) the number of the components of $M-G(M)$ is larger than or equal to 2 .

The next theorem can be proved by extensive use of J. W. T. Youngs' method ([4]), in the case of $l=3$, who proves the theorem.

Theorem (2.1). Let G have no k-circuit with $k<l$, and $G(M)$ be an l-gon imbedding, then $G(M)$ is a simplest imbedding; moreover if $G(N)$ is an imbedding in a surface N with the same Euler characteristic as M, then $G(N)$ is the l-gon imbedding.

§ 3. Main theorem.

Lemma (3.1). If $H \subset G$, the chromatic number of H is not larger than the one of G.

Proof. Let n be the chromatic number of G. As G is n-colorble, $G^{0}=\delta_{1} \cup \cdots \cup \delta_{n}$, where δ_{i} is an $S C$-set. If we put $\delta_{i}^{\prime}=\delta_{i} \cap H^{0}(i$ $=1, \cdots, n), H^{0}=\delta_{i}^{\prime} \cup \cdots \cup \delta_{n}^{\prime}$, and δ_{i}^{\prime} is an $S C$-set on H. As it can be happen that $\delta_{i}^{\prime}=\delta_{j}^{\prime}$ for $i=j H^{0}=\delta_{1}^{\prime \prime} \cup \cdots \cup \delta_{m}^{\prime \prime}(m \leqq n)$ where $\delta_{1}^{\prime \prime}$ is an $S C$-set.

Let $G=\left(G^{0}, G^{1}\right)$, then $G^{0}=\gamma_{1} \cup \cdots \cup \gamma_{n}$ is said to be a colorclassification and γ_{i} a color-class of G, if any γ_{i} is an $S C$-set, $\gamma_{i} \neq \phi$ for any i and $\gamma_{i} \cap \gamma_{j}=\phi$ for $i \neq j$.

Generally, let $G(M)$ be a 2 -cell imbedding and α be a connected component of $M-G(M)$. Let a closed disk D^{2} be the subspace of euclidean space of dimension 2 consisting of points (x_{1}, x_{2}) such that $x_{1}^{2}+x_{2}^{2} \leqq 1$. Let $\varphi_{\alpha}: D^{2} \rightarrow \mathrm{Cl} \alpha$ be a continuous map from a closed 2 -disk into closure of α such that (i) $\varphi_{\alpha} \mid \operatorname{In} D^{2}$ is a homeomorphism In $D^{2} \rightarrow \alpha$, (ii) $\varphi_{\alpha}\left(B d D^{2}\right)=B d \alpha$ and (iii) when α is l-gon, there is points P_{1}, \cdots, P_{l} in $B d D$ such that $\varphi_{\alpha} \mid\left(P_{i}, P_{i+1}\right)$ is a homeomorphism of (P_{i}, P_{i+1}) onto (A, B), where $\left(P_{i}, P_{i+1}\right)$ is an arc between the adjoining points on $S^{1}=B d D^{2}$ and (A, B) is an arc of G on $B d \alpha$. Then, these points P_{1}, \cdots, P_{l} are called the vertices of D^{2} related to φ_{α} and φ_{α} is called a polygonal representation of α. For any α, there is a polygonal representation φ_{α}. And, moreover, the polygonal representation of α has the properties that for any two polygonal representations $\varphi_{\alpha}, \varphi_{\alpha}^{\prime}$ of α, there are orientations on $S^{1}=B d D^{2}$ and vertices of $D^{2}, P_{1} \cdots, P_{l} ; P_{1}^{\prime}, \cdots, P_{l}^{\prime}$ related respectively to φ_{α} and $\varphi_{\alpha}^{\prime}$ which are ordered in the direction of each orientation and $\varphi_{\alpha}\left(P_{i}\right)$ $=\varphi_{\alpha}^{\prime}\left(p^{\prime}\right), i=1, \cdots, l$.

Lemma (3.2). If H has no k-circuit with $k<3$, the chromatic number of H is $\geqq 3$ and if there exists 2 -cell imbedding $H(M)$, then there is a graph G such that (i) the chromatic number of G is equal to that of H, (ii) G has no k-circuit for $k<3$ and (iii) there is a 3-gon imbedding $G(M)$.

Proof. Let n be the chromatic number of H, then H^{0} $=\delta_{1} \cup \cdots \cup \delta_{n}$, where δ_{1} is an $S C$-set, $i=1, \cdots, n$, and for any i, $\delta_{1}-\left(\delta_{1} \cup \cdots \cup \delta_{i-1} \cup \delta_{i+1} \cup \cdots \cup \delta_{n}\right) \neq \phi$. Therefore, we can classify H^{0} by such color-classification that

$$
H^{0}=\gamma_{1} \cup \cdots \cup \gamma_{n}, \quad \gamma_{i} \subset \delta_{i} .
$$

If a vertex A is in γ_{i}, we note γ_{i} by $\gamma(A)$.
G is constructed by four steps.
(1) We construct H_{1} and $H_{1}(M)$ from H and $H(M)$.

We take the pair of the vertices $A, B \in H^{0}$ satisfying the following conditions:
(3.3) (i) $\gamma(A) \neq \gamma(B)$ for the color-class defined before.
(ii) A and B are connected in the boundary of a component of $M-H(M)$.
(iii) For a polygonal representation $\varphi_{\alpha}: \quad D^{2} \rightarrow \mathrm{Cl} \alpha$, there are such $P_{i} \in \varphi_{\alpha}^{-1}(A)$ and $P_{j} \in \varphi_{\alpha}^{-1}(B)$ which are not adjoining in $S^{1}=B d D^{2}$.

If there is a pair A, B satisfying (3.3) in H^{0}, we make an arc $\left(A_{1}, B_{1}\right)$ joining A_{1} and B_{1} in α. And we obtain a graph $H_{\left(A_{1}, B_{1}\right)}$ and an imbedding $H_{\left(A_{1}, B_{1}\right)}(M)$ such that $H_{\left(A_{1}, B_{1}\right)}(M)=H(M) \cup\left(A_{1}, B_{1}\right)$.

By finite repeating the above construction we obtain a graph H_{1} and an imbedding $H_{1}(M)$ satisfying following conditions:
(3.4) (i) $H \subset H_{1}, H^{0}=H_{1}^{0}$, and $H_{1}(M)$ is an extension of $H(M)$.
(ii) For a color-classes of $H, \gamma_{i}(i=1, \cdots, n), \gamma_{1, i}=\gamma_{i}$ is a color-class of H_{1}
(iii) H_{1} has no 1-cercuit.
(iv) Any component of $M-H_{1}(M)$ is a 3 -gon or 4 -gon, and moreover, in case of a 4 -gon, all vertices in the boundary are divided to two color-classes which were given in (ii).
(2) We construct a 3 -gon imbedding. Let α be a 4 -gon which is a component of $M-H_{1}(M)$. And let P_{1}, P_{2}, P_{3} and P_{4} be the vertices of D^{2} related to a polygonal representation $\varphi_{\alpha}: D^{2} \rightarrow \mathrm{Cl} \alpha$. Let O be the center of D^{2} and (O, P_{i}) be the radius, $(\mathrm{i}=1,2,3,4)$. Note $\varphi_{\alpha}(O)=A_{\alpha}$ and $\varphi_{\alpha}\left(P_{i}\right)=A_{\alpha, i}$. Lastly, let $\left(A_{\alpha}, A_{\alpha, i}\right)$ be an arc joining A_{α} and $A_{\alpha, 1}$ which is approximation of $\varphi_{\alpha}\left(\left(O, P_{i}\right)\right)$ differentiably or piecewise linearly.

Now, we construct a graph H_{2}, and imbedding $H_{2}(M)$ and a color-class γ_{2} as follows:
(i) $H_{2}^{0}=H_{1}^{0} \cup\left\{A_{\alpha} \mid \alpha\right.$ is a 4 -gon component of $\left.\mathrm{M}-H_{1}(M)\right\}, H_{2}^{1}$ $=H_{1}^{1} \cup\left\{\left(A_{\alpha}, A_{\alpha, i}\right) \mid \alpha\right.$ is a 4 -gon component of $\left.M-H_{1}(M), i=1,2,3,4\right\}$.
(ii) $H_{2}(M)$ is made such that $H_{2}(M) \mid H_{1}-H_{1}(M)$ and $H_{2}(M)$ $\left(A_{\alpha}, A_{\alpha, i}\right)=\left(A_{\alpha}, A_{\alpha, i}\right)$; the arc in M made before.
(iii) As the chromatic number of $H \geqq 3$ and by (iv) of (3.4), there is at least a $\gamma_{1, j}$, for any 4 -gon α, such that $\gamma_{1, j} \neq \gamma_{1}\left(A_{\alpha, i}\right)$, $i=i, 2,3,4$. We take such a $\gamma_{1, j}$ for α, and put it $\gamma_{1}(\alpha)$. Then $\gamma_{2, j}=\gamma_{1, j} \cup\left\{A_{\alpha} \mid \gamma_{1}(\alpha)=\gamma_{1, j}\right\}, j=1, \cdots, n$ are color-class of H_{2} such that $H_{2}^{0}=\gamma_{2,1} \cup \cdots \cup \gamma_{2, n}$.
$H_{2}, H_{2}(M)$, and $\gamma_{2, i}$ constructed above satisfy following conditions: (3.5) (i) $\left(H_{1} \subset H_{2}\right.$ and $H_{2}(M)$ is an extension of $H_{1}(M)$.
(ii) The color-classification $H_{2}^{0}=\gamma_{2,1} \cup \cdots \cup \gamma_{2, n}$ satisfy $\gamma_{1, i} \subset \gamma_{2, i}$ for $i=1, \cdots, n$.
(iii) H_{2} has no 1-circuit.
(iv) Any component of $M-H_{2}(M)$ is a 3-gon and the boundary is a 3 -circuit.
(3) Next, we take off 2-circuits. If there are 2-circuits in H_{2}, name one of them D. Let A and B be the vertices of D and $(A, B)_{0}$ be one of the arcs of $D .(A, B)_{0}$ is the common boundary of α_{1} and α_{2} which are components of $M-H_{2}(M)$. By (iv) of (3.5), there is a vertex C_{i} of $B d \alpha_{i}$ which is not A nor $B(i=1,2)$.

Now we construct $H_{D}, H_{D}(M)$, and $\gamma_{D, i}$ from $H_{2}, H_{2}(M)$, and $\gamma_{2, i}$ as follows:

$$
\text { (i) } H_{D}^{0}=H_{2}^{0} \cup\left\{D_{1}, E_{1}, D_{2}, E_{2}, F\right\}
$$

$$
H_{D}^{1}=\left(H_{2}^{1}-(A, B)_{0}\right) \cup\left\{\left(A_{1}, D_{i}\right),\left(D_{i}, E_{i}\right),\left(E_{i}, B\right),\right.
$$

$$
\left.\left.\left(C_{i}, D_{i}\right),\left(C_{i}, E_{i}\right),\left(F, D_{i}\right),\left(F, E_{i}\right) \mid i=1,2\right\} \cup\{(A, F), B, F)\right\}
$$

(ii) $H_{D}(M)$ is made such that

$$
\left.H_{0}(M) \mid\left(H_{0}-A_{1} B\right)_{0}\right)=H_{2}(M) \mid\left(H_{0}-(A, B)_{0}\right)
$$

$H_{D}(M)(F)$ is the center of $H_{2}(M)\left((A, B)_{0}\right)$ and

$$
H_{D}(M)((A, F) \cup(F, \cdot B))=H_{2}(M)\left((A, B)_{0}\right),
$$

$H_{D}(M)\left(D_{i}\right)$ and $H_{D}(M)\left(E_{i}\right)$ is in α_{i} and the image of $\left(A, D_{i}\right),\left(D_{i}, E_{i}\right)$, $\left(E_{i}, B\right),\left(C_{i}, D_{i}\right),\left(C_{i}, E_{i}\right),\left(F, D_{i}\right)$, and $\left(F, E_{i}\right)$ are the arcs in α_{i} joining the corresponding points and not intersecting each other, ($i=1,2$).

$$
\gamma_{D, i}= \begin{cases}\gamma_{2, i} \cup\left\{E_{1}, E_{2}\right\} & \text { if } \gamma_{2, i}=\gamma_{2}(A), \tag{iii}\\ \gamma_{2, i} \cup\left\{D_{1}, D_{2}\right\} & \text { if } \gamma_{2, i}=\gamma_{2}(B), \\ \gamma_{2, i} \cup\{F\} & \text { if } \gamma_{2, i}=\gamma_{2}\left(C_{1}\right), \\ \gamma_{2, i} & \text { if the other case, } i=1, \cdots, n .\end{cases}
$$

$\gamma_{D, i}$ is well defined, for $\gamma_{2}(A), \gamma_{2}(B)$, and $\gamma_{2}\left(C_{1}\right)$ are different each other. This $\gamma_{D, i}$ is the color-class of H_{D}^{0}.

By the modification $\left(H_{2}, H_{2}(M), \gamma_{2}\right) \rightarrow\left(H_{D}, H_{D}(M), \gamma_{D}\right)$, the 2-circuit D is taked away from H_{2}. Then, by repeating such modifications, we obtain following $H_{3}, H_{3}(M)$, and γ_{3} :
(i) $H_{2}^{0} \subset H_{3}^{0}$.
(ii) There are color-classes $H_{3}^{0}=\gamma_{3,1} \cup \cdots \cup \gamma_{3, n}$ such that $\gamma_{2, i}$ $\subset \gamma_{3, i},(i=1, \cdots, n)$.
(iii) H_{3} has no k-circuit with $k<3$.
(iv) Any component of $M-H_{3}(M)$ is a 3-gon and the boundary is a 3 -circuit.
(4) $H_{3}=G$ is the required graph. By (iii) and (iv) of (3.6), G satisfies (ii) and (iii) in the lemma. Then, we show that G also satisfies (i).

By (ii) of (3.5), the chromatic number of H_{2} is not larger than n. On the other hand, by (i) of (3.5) and (3.1), the chromatic number of H_{2} is not smaller than n. Therefore, H_{2} is n-chromatic.

Next, we show that H_{3} is n-chromatic.
Let take a subgraph \tilde{H}_{2} of H_{2} which satisfies the following conditions:
(i) $\widetilde{H}_{2}^{0}=H_{2}^{0}$.
(ii) For any two vertices A, B in $H_{2}^{0},(A, B) \in \widetilde{H}_{2}^{1}$, if and only if $(A, B) \in H_{2}^{1}$. Moreover, for $A, B \in H_{2}^{0}, \widetilde{H}_{2}^{1}$ contains at most one arc joining A and B.

Namely, \tilde{H}_{2} is a graph which was made by taking away 2 -circuits from H_{2}.

It can be seen by the method of constructing H_{3} and \widetilde{H}_{3} that $\widetilde{H}_{2} \subset H_{3}$ and the chromatic number of \widetilde{H}_{2} is equal to that of H_{2}. Then, the chromatic number of $H_{3} \geqq n$. On the other hand, by (ii) of (3.6) and H_{3} being n-chromatic, the chromatic number of $H_{3} \leqq n$. Therefore, H_{3} is n-chromatic. And lemma (3.2) was proved.

By (2.1) and (3.2), we have
Theorem (3.7). If a graph H has no k-cirquit for $k<3$, the chromatic number of H is $\geqq 3$ and if there exist 2 -cell imbedding $H(M)$, then there is a graph G which has the same chromatic number as H and has simplèst imbedding into M.

[^0]: *) See the references on the last page (p .1024) of the part II of this paper.

