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Here, we look at the branches which describe the interactions
between particles o the model in [4]. This leads to finer proofs of
Chapman-Kolmogorov equation and the backward equation. A con-
sistency condition holds for probabilities o events which are de-
termined by bundles o these branches.

1 To consider the simplest model with binary interactions, let
q(t, y)=ql(t, y) and qo=_q.=q3=_ =O, and write r(y’lt, y,E) or
zr(y]t, y, E) in 1 of [4]. ) Then, the 2orward and the backward equa-
tions are

x, t,E)-Po(s, x, t,E)q- ftdvf P(f)(s, x, v,P()(s, dy)
Js 3R(1)

,(dy )q(v, y) (y’]v, y, dz)Po(v, z, t, E),
R

()
p(f)P(e)(dy’)q(v y) (y’lv, y, dz)P( ,o)(v z, t, E)80v

R

(f) f(dx)P(Zwhere P,, (N) (, z, r, N), N t.

Let T be the set of all branches which grow downward with
binary branching oints and the trivial branch (or a pole)b,. or
bl and b in T, b-(b, b) is the branch which has b and b on the left
and the right side of the highest branching point. Length l(b) and the
number of the end oints (b) are defined by

l(b,)=O, l((b, b))= 1+ max(l(b), l(b)),
?(bo)- 1, ((b, b))-(b) / (b).

When (b)-n, let b(bl,..., b) be the
branch b with branches ba,..., bn con-
nected at the end points, with b at the
k-th end point from the left. We write
b >_ b’ when b- b’(bl, ., bn). Since the.
branches bl, ...,b are determined

bo (b,b2)

1) This is for the simplicity of descriptio,ns. Results in this paper can be
extended to the models in [4.].
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b (bl,b2, b3)

b b2 b3

uniquely for given b and b’(<_b), we
denote the bundle of branches (b,
..,b) by bib’. When (b)=n and

x=(x, Xn), let b(x)=b(x, .., Xn)
be the branch b with variables
x,..., Xn at the end points, with x
at the k-th end point from the left.
(bl(xl), b2(x2)) and b(b(xl), ..., bn(xn))
are defined similarly.

For beT, x--(x,...,xt()),s=(s,...,s()) and
max(s)<_ t, we define P(s, b(x), t, E) inductively by

Xl x x3

(x)

x, (x,,.
n-$(b+). 2>

Then, by a simple induction, we have

P(, b(x), t, R)-t- P(, b(x), v, dy)q(v, y)<_ 1,
(s) R

starting with the equality in case b--b0.
2. Theorem 1. For s, t, u such that max(s)_t_u,

( 4 P(s, b(x), u, E)- , [ I-[ P(s, b(x), t, dy)
bKb3R(b) bkb/b

P((t, ..., t), b’(y), u, E).

such that

P(s, bo(x), t, E)= Po(s, xl, t, E),
P((s, ), (b(x), b(x)), t, E)

(3) dr P(Sl, b(x),r,dy)
(S, s) R

P(s2, b2(x2), r, dy’)q(r, y)

f (y’ r, Y, dz)Po(r, z, t, E),
JR

where s= (s, ..., s), s2= (s/,
X=(X/,’..,X/n), m=(bl), and

Note. This is an exact extension of (52) in Feller [1] to our
present m(del

P(s, x, u, E)-
=oP(s’ x, t, dy)Pn_(t, y, u, E).

Outline of the proof. For b--bo, (4) is the Chapman-Kolmogorov
equation for Po(s, x, t, E). If we assume the result for b and b2, then
for b (bl, b2),

(IP(s, b(x), u, E) dr + dr b(x), r, dy)
max()

P(s, b(x), r, dy’)q(r, y) [ =(Y’ r, Y, dz)Po(r, z, u, E)
R

2) Intuitively, P((sl,...,sn), b(xl,...,Xn), t,E) is the probability that the
particle, started at x at time s, is in the set E at time t after the interactions
with other particles which started at x2,...,x, at times t2..., t, respectively,
where the order of the interactions are determined by the branch b.
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l- P(s,b(x), ...,
R#(b’) b@bl/b’

bj(x), t, dy’)P((t, t) b"(g’)v dy’)
b"Kb R(b) bb/b

q(v, y)| 7r(y’lv, y, dz)Po(v, z, u, E)
JR

R(bo) b’ R((b’,b"))

I- P(s, b;(x), t, dy)P(s, b(x), t, dy;)
(bebl/b’,b’ eb/b")
P((t, ..., t), (b’(g), b"(g’)), u, E).

But, this is the right side of (4), since b/bo={b} and there are natural
one to one correspondences between {b’<_ b} {b"<_ b2} and {b’<_ b}-- {b0},
between {b/b’} {b2/b"} and b/(b’, b")--{b0} for each fixed b’<_b and
b"<_b.

For a branch b(ev b0) and the
i-th end point of b from the left,
there is a unique pair o branches
,b’ and such that b(x)-b’(x,
", xi_l, (bo(xi), b(c)), x, ..., Xn)

or b(x)- b’(x, ,x,(b(),bo(x)),
x,/,...,x) or some k. This

is called the closest subbranch
of b to the i-th end point.

Theorem 2. By substituting

b

s--(s, s) and b(x)-(b(x), b(x.)) in the place of r and y of P((r,
..,rn), b(yl,...yn), t,E), we have

P((s, r., ..., r), b(b(x), y., ..., Yn), t, E)-- dv
(s, r)

5 ) P(s, b(x), v, dy) P(s., b.(x.), v, dy’)q(v, y)
R

[" (Y’ v, Y, dz)P((v, r, ..., rn), (z, y, ..., y), t, E),

where -(r,...,r) are time parameters which correspond to the
closest subbranch ) of to the first end point, s-(sl, ..., (b)) and
s--(8+, ,8

Outline of the proof. When -b0, (5) coincides with (3). When
-(b’, b"), assume (5) with replaced by b’. Since/ is also the closest
subbranch of b’ to the first end point, P((s, r, ..., rn), (b(x), y., ..., Yn),
t, E) is equal to

3) These correspondences are of the form b’b"--.(b’, b").
4) The substitution can take place at any end point of , where the cor-

responding formulation is clear.
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P((s, ’, V’), (b’(b(x), y ), b"(y")), t, E)

t ,)dafRp((s, b"(d), b’(b(x), y’), a, dy)P(r", y"), a, dy’)

q(a, y) [ (y’[a, y, dz)po(a, z, t, E)
dR

P(s, b(x), , dr’) q(, v)[ u(v’ , v, dw)
dR

,’). b’(w. if). au) _ P(,". b"(ff’), v)[._
(y’]a, y, dz)Po(a, z, t, E)

with obvious notations r’, r", y’, y". But, this eoineides with the right
side o (5) by changing the order of integration by da and d, using (3).

Let (x) be the sum o non-negative unetions (x), k= 1, 2, ...,
measurable in x=(x,,..., Xn,), and let I(x) be the set of indices
for x. For a subset J o I={1,2,...}, we write

= Rt((x)) iez(xe)

( ).

Then, by a similar induction as in II of [3], we have

Theorem . The minimal solution p(z)(s, x, , E) o/ (1) is given
by

(6)

(7)

P(X)(s, x,t, E)-- f , P((s, ..., s), b(x), t, E),
{1}c bet

P(Z)(E)--f,, rP((s, ..., s), b(x), t, E).

3. Applications. a) Chapman-Kolmogoro equation:

P(Z)(s, x, u, E)- x, t, dy)P , )(t, y, u, E), s< t<u.

Proof. By (4) and (6), P((, z, , N) is equal to

f f P(s, b(x), t, dy)P(t, b’(y), u,E))
{1}c b’b R(b’) bkeb/b’

P(s, b(x), t, dy)P(t, b’(y), u, E)
bT R(b) k=l bT

f P(s, b(Xl), t, dyl)
5’e art(’) bT =2

bT

P(f)(N, 1, t, 1) P(2(dg)P(t, b’(), , )
5) When f is a pro,bability measure, these are the integrals by infinite

direct products of .f’s.
6) P(s, b(x), t,E) is an abbreviation for P((s,..., s), b(x), t, E).
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--| P()(s Xl, , dYl)I (D(f))oo p( b’()
R J{1}c b’eT

coinciding with the right side of (7) by (6).
b) Backward equation (2) for the minimal solution is proved by

rewriting

r, x, t, E)-- f P((s, r, r, ..., r), b(x), t, E), r, s( 8 P(Z)(s, t,)
J{x}c e T

in two ways. First, noting that b bb((bo, b)bo,..., bo) is a one
to one correspondence between T T and T--{b0}, and using (5), we
have

{} e T- {bo}

P((s, r, ..., r), b(x), t, E)[
x, t,E)+[ f P((s, r, .,Po(s, bl((bo(xl),

d{1} bTbT

( 9 ) b(x’), x"), t, E)

Po(, z, t, ) + f P(8, bO(l), , )
{1} T Vr

X P((, ..., ), b(x’), , d’)q(r, )[ (’ , g, g)

X P((r, , ..., ), b(z, x"), t, )

sVr R R

(y’ r, y, dz)P(f)(r, r, z, t, E).
On the other hand, we can prove, by (4),

p(f)(10) P(X)(s,r,x,t,E)-- ,[s,x,t,E), or rst,
and hence (2) is obtained by substituting (10) into the left and the
right extremes o (9) with r replaced by s0. In act, P()(s, r, x, t, E)
is equal to

{llC b’Sb R(b’) e/’
k2

(where b is the rst of b/b9
7) Intuitively, this is the probability that the particle, started at xl at time

s, is in the set E at time after the interactions governed by b with other par-
ticles which started at time r with the common initial distribution f independent-
ly. Clearly, this reduces to P(f)(s,x, t, E) when r=s.

8) The corresponding equation of ’o.rward type is

P(f)(s,r,x,t,E)=Po(s,x,t,E)+ dr[ P(f)(s,r,x,r,dy
JsVr

($Pr, (dy )q(r,y).[(y ]r,y,dz)Po(r,z,t,E).

This is proved in a similar way, or by a successive approximation similar to the
proof of (6). Note that this reduces to (1) when r=s.

case s<_r<_t, P(f)(s, r, x, t, E)-- I-RPo(s, x, r, dy) P(f)(r, y, t,9) In



1000 T. UENO [Vol. 45,

(bt)

f , , P((s, r, ..., r), bl(xl), s, dyl) l-[
{1}c b’eT R(b blOT k=2

P(r, bk(x), s, dyk)P(s, b’(y), t, E)
bkT

(b’) p(f)b,er (’)
x(dyl) =VI P(/,2(dy)P(s, b’(y), t, E)--P( r,,)(s, x, t, E),

since P((s, r, ..., r), b(x),s,E)-(E) or 0 according as b-bo or not
for r <_ s.

Let b’_< b and define a substochastic measure on (R’), _(R(’)))

P(b/b’, s, x, t, dy)- 1-I P(s, b1,(x), t, dye),
bkb/b

where x--(x, ..., x(,)), s-(s, ..., ,)).10)
Then, the following extension of (4) is proved easily.

(4’) P(b/b’, s, x, u, E)-- E P(b/b", s, x, t, dy)
b’Kb b dR(b’)

P(b"/b’, t, y, u, E)
Let b >_ b >_ b2 >_ >_ b, to <_ <_ <_ in, E e _(RI), ", En

e _(R), and let

P(to, t, b, b, b x, E, E)-.IP(b/b,_ to, x, t, dx).I_
(11) p(bl/b2, t, xl, t2, dxO. {" P(bn_2/bn_, tn-2, Xn-2, n-1, dxn_)

dEn-1

P(bn_/bn, tn_,Xn_,tn, En).
Then, a version of the consistency condition holds"

P(to, t, t, ., tn bo, b, b, ., bn x, El, E, ., En)
P(to, t, t2, t, ., t bo, bl, b2, ., bn x, El, Rt()E, ., E),

blbba
where we skipped t alone for simplicity. This suggests that (11) is
the probability of a cylinder set of a probability space which describes
all interactions suffered by the particular particle we are watching at.
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