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226. On Realization of the Discrete Series
for Semisimple Lie Groups

By Ryoshi HoOTTA
(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1970)

This note is an announcement of a result, which says, briefly, that
most of the discrete series for a semisimple Lie group are realized as
certain eigenspaces of the Casimir operator on the symmetric space
(Theorem 2). This construction is in some sense a generalization of
the methods adopted in [1], [2], [9] for special groups and in [5] for the
groups of hermitian type. Also, [6] indicates the above method of
realization. Further, as for alternative methods to realize most of the
discrete series, we refer to the recent works [5],[8]. Our technique
used here depends heavily on that of [5]. A detailed exposition with
full proofs will appear elsewhere.

1. Let G be a connected non-compact semisimple Lie group with
a compact Cartan subgroup. We assume, for convenience, that G has
a faithful finite dimensional representation and its complexification G°
is simply connected. Fix a maximal compact subgroup K of G and a
Cartan subgroup H contained in K. We denote by g,f and §j the Lie
algebras corresponding to G, K and H respectively. For complexifi-
cations g¢, 1%, 45 of g,t, 5, we denote by 4 the root system of (g¢, §°),
and by W, the Weyl group of (¥¢,§°). Taking a positive root system
P of 4 fixed once for all, P, (resp. P,) denotes the set of a positive com-
pact (resp. non-compact) roots. Let L be the character group of H, L’
the set of regular elements in L. Introducing an inner product (,) on
L induced by the Killing form, we put e(4)=sign [[,cr (4, @) for 1¢ L/,
and e()=0 for Le L—L’. We also put ¢,(A)=sign [[,cp, (4, ) if 2e L
is f¢-regular, and &,(1)=0 if A is f°-singular. For discrete series, the
following fact is known by Harish-Chandra [3]. Let &, be the discrete
series for G. For e L/, there then exists a unique element w(4) € &,,
and the map L’ s A—~w(4) € £, is surjective, while w()=w(A) if and
only if there exists w e W, such that wAi=4'. We shall denote by 6,,,
the character of w(4).

For a finite subset A of L, we shall denote by |A| its cardinal num-
ber and put {A>=3> .., a. Put p={P>/2, 0,=<{(P;>/2 and p,=p— ps.
If e,(A+0)#0 for 2¢ L, there exists a unique we W, such that
w(A+ px)—pi is k°-dominant. We then denote by [4] the equivalence
class to which belongs an irreducible K-module with highest weight
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w(A+ p,)—pir. For the sake of notational convenience, we put [1]=0
if e,(A+px)=0. We shall denote by x(4) the character of [4].

2. For a finite dimensional unitary K-module V, we denote by |/
the homogeneous vector bundle over G/K associated to V, whose fiber
has an invariant hermitian metric. Throughout this note, for a K-
module the corresponding script letter denotes the homogeneous vector
bundle associated to the K-module given. Let L,(C1V) (resp. C~(C)))) be
a space of all square-integrable (resp. differentiable) sections of i/,
which is naturally regarded as the space consisting of all V-valued
square-integrable (resp. differentiable) functions f satisfying f(gk)
=k'f(g) for ke K,gc G. Now assume that there are given two K-
modules V, W. For a G-invariant linear differential operator D : C~(<{))
—C=(9)), the maximal extension D: L,(C/)—L,(9/) means the closed
linear operator whose domain consists of /¢ L,(C))) such that Df ¢ L,(9)
in the sense of distributions. We shall hereafter consider differential
operators on square-integrable sections in this sense. Let D*: L, ()
—L,(C))) be the maximal extension of the formal adjoint operator for
D. We then have the unitary representations of G on the Hilbert spaces
Ker D and Ker D*. Let (Ker D), (resp. (Ker D*),;) be the smallest
closed invariant subspace which contains every irreducible closed in-
variant subspace of Ker D (resp. Ker D*). Denote by x,, (resp. 7y) the
representation on the space (Ker D), (resp. (Ker. D*),;). It is then

shown that the operator nv(go)=IGgo(g)zry(g)dg is of trace class for a

compactly supported C=-function ¢ on G, and so defines an invariant
distribution Trace 7, on G (the same holds also for 7). The follow-
ing theorem can be proved by a similar method to the one in [5].

Theorem 1. Under the above situation, assume that D is at most
o first order operator, and denote by vy, yw the characters of V,W.
Suppose that

v —xw=ex(A+0) Dlgcr, (D)UY (A+Q)
for some A e L such that (A4 p)+0. Then
Trace 7, —Trace 7y =(—1)'%10,,, .,

where @,={B € P,; (A+p, B)>0}.

Corollary. For AeL, take such K-modules V, W as [V]
=@[A1+{Q>] where the summation runs over every QC P, such that
ex(A+ A+ 0+ =(=1)'?, and as [WI=@I1+{Q>] where the
summation runs over every QC P, such that e, (A+ p)e (A4 0, +<Q))
=(—=1)9*1,  Then for any first order operator D, the formula in
Theorem 1 holds. Here, [V],[W] denote the equivalence classes to
which V, W belong.

3. Let V,,q be an irreducible K-module belonging to [1+{Q)]
for Ae L,QCP,, when &,(A+p;+<Q>)+0, and denote by w,,, the
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unique element of W such that w,, (4 + 0 +<@>) is k°-dominant. Let
£ be the Casimir operator of G. Then the action of 2 on L,(G) as a
left invariant differential operator defines the action v(2) on L,(CV/,, )
because 2 belongs to the center of the universal enveloping algebra of
g°. Put H¢={f € L( V. ; v f=A+2p, D f}. For we W,, weput
A0, Q) = (0—<@, 2> — Q> — 0)/2+ (01, P — {Q> — Ww(p, — (Q))
+(p, p)/2. We then have the following lemma in a similar way to the
one in [6].

Lemma. If|(A+p, B)|>A,(W,. g Q) for every B e P,, then H}=0
if Q+Qs.

In [4], we obtained an elliptic complex C{/¥ whose first term is the
homogeneous vector bundle associated to an irreducible K-module V,
with lowest weight 41+2p, (the (#)-complex for A under an admissible
linear order of 4 in terminology of [4]). One can define the square-
integrable “cohomology” space H{(C{¥) for this elliptic complex. The
following proposition is shown by Theorem 1 and the above Lemma.

Proposition. There exists a non-negative constant a such thaot
the following holds. If |(A+p,@)|>a for every a € P, then Hj:(CV¥)+0
and the irreducible unitary representation of G with character 0,,,,,, s
realized as a closed subspace of H#(CV¥) for q,=|@,).

4. For AeL’, choose a positive root system such as P={aec 4;
(4, a) <0} and fix the linear order on 4 induced by P. Put A=4—p.
Then —(4+2p,) is t°-dominant with respect to this linear order. Let
V. be the irreducible K-module with lowest weight 41+2p;, and put
A(w, Q=(Q>,{Q)/2+(0x, on—wp,) and b=maX,cw,qcr, AW, Q).
The next theorem follows from Corollary to Theorem 1 and Lemma in
3.

Theorem 2. If |(A+p, B)|>b for every Be P,, then the Hilbert
space

@az{f e L,(CV); V(Q)f=(2+2,0, /z)f}
gives an trreducible unitary representation belonging to the discrete
series for G, whose character is 0, ,.

Remark. In view of Harish-Chandra’s result cited in 1, we see
that “most” of the discrete series are realized in this procedure. This
construction is partially a generalization of the method in [9] for the
de Sitter group and an answer to the proposal in [6]. Further, when
(G, K) is a symmetric pair of hermitian type and that all elements in
P, are totally positive, Theorem 2 is included in Proposition 9.1 in [5].

5. As for a relation with another realization of the discrete series,
we shall refer to the one by means of Schmid’s operator (see [4], [T]).
For Ae L', we choose P and define 4, V, as in 4. Put ¢*=|min,cp, ¢cr,
(0.—<Q>,@)|. Then A satisfies the condition (§) in terminology of [4]
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if [(A+p, @)|>c* for every a € P,. Hence for a K-module V; whose ir-
reducible components consist of [41+ 8] where 8 runs over the elements
on P,, we have an elliptic first order operator
D L(CYV)—Ly(V)

(see[4], [7]). We denote by 4(, the null space of 9. Put ¢’=|min,cp, scp,
(ox—pn— B, a)|. It is then easily seen that the multiplicity of [4] in 4
is at most one, if [(1+ p, @)| >max (¢, ¢) for every a € P,, from Theorem
6.2 in [4] (see also [7]). Taking the unique element w,e W, such that
WPy = — Py, we put ¢”=max,.p, A(w,, @), and c=max (¢}, ¢/, ¢’). Com-
bining the above fact with Theorem 1 and Lemma in 3, one can com-
plete a proof of the following theorem.

Theorem 3%¥. If |(A+p,a)|>c for every ac 4, then I(, gives an
wrreducible unitary representation with character 0,,. .

Remark. Under the condition of Theorem 8, we see that 4, is
contained in §,. Moreover, we can show that §* is irreducible, which
implies that $,=.%;. Therefore, under this condition, the two
procedures to realize the discrete series are equivalent.
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# The fact in Theorem 8 was communicated in the letter from Prof. Schmid
without a proof.



