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1. Introduction. After the work of Rényi [1], ergodic properties
of B-expansions of real numbers have been studied in [2]-[4]. In this
paper we generalize these results for a class of expansions, called piece-
wise linear expansions, which includes S-expansions as special cases.

Let B=(Bo b1y * - +» Bw)s N=1, be a (N + 1)-tuple of positive number
such that 0<0=pyA1 -2 A/BL1.

We denote the set of all (N-+1)-tuples by V(V+41). For each
E € V(N +1), we define a corresponding function f(¢) by

t
— 0tLl,
Bo

B = N<t<N+0, (k=N),
1, t>N-+0.
The function f(t) satisfies the Rényi’s conditions [1]. Thus every real
number x has the f-expansion
r=ay(@) + fla,@) + fa @)+ ). +),
where the digits a,(x),7n=0,1, - . -, and the remainders
T o= f(a(®)+ f(@p @)+ --2)--2), n=0,1,.--,

are defined by the following recursive relations: ayx)=[x], T°z={x},
Tt ={f"'(T"0)}, ¢y ,(@)=[f(T"®)], n=0,1, ..., where [z] denotes
the integral part and {2} the fractional part of the real number z and
f~!is the inverse function of f.

This f-expansion is called a piecewise linear expansion itnduced by
B or simply B—ewpansion, and the transformation Tx={f"'(v)}, 0<%
<1, is called a piecewise linear tramsformation induced by 5. By
definition, T is a many to one transformation of [0,1) onto itself and
nonsingular with respect to the Lebesgue measure m.

For the number 1, we define, especially, a,(1)=0and 7°1=1. Then
B e V(N +1) is said to be periodic if the B-expansion of 1 has a recur-
rent tail, and rational if the B-expansion of 1 has a zero tail. The order
of a rational E is the minimum integer r such that «,(1)=0 for all
n>r+1.

2. Invariant measures. Lemma 1. Let T be a piecewise linear
transformation induced by B e VIN+1) and p o finite measure equi-
valent to the Lebesgue measure m. Then p is T-invariant if and only tf
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h(@) = i P+ 2 (o + 2)da, a.e.

where M) is the Radon-Nikodym derivative of p.
Proof. For any te[0,1), we have

T-10,0)=| i P+ 2)h(f (o + ) d.

The lemma is_an immediate conclusion of this fact.
For any 8e V(N +1), we define a function
W)= 3, Clw) |
n=0 ﬁao(nﬁa;m 18“11,(1)

where SBq,,,= and C,(x) is the characteristic function of the interval
[0, T"1).
Theorem 1. Let T be a piecewise linear transformation induced

by E and put y(A):f h(x)dz for any measurable set A. Then p is
A
finite T-invariant measure equivalent to the Lebesgue measure.
Proof. First we prove that

(1) Zf’(k+w)0n(f(k+x)) — f @y, (1)) + Crn®)

Qp+1(1)

If f(x)>T"1, then (1) is trivial. Thus it suffices to prove (1) when there
exists an integer k such that f(k+x) <T"1. There are two possibilities:
(i) there exists k& such that f(k+2x)<T"x<f(k+x), (i) there exists k
such that f(k+1)<T*"1< f(k+1+x). Inthecase (i) a,.,(D=Ek, C,,,(2)
=1, and in the case (ii) a,,,(D)=k+1,C,,(X)=0. As a result, we get
(1). Furthermore, by the piecewise linearity of f, we have

(2) 1= % S (@ ,,(1)) .
"Z=:° BaoyBasvy* * * Banwy

Therefore, we have

S S e+ @/ et )
d 1

= —_— (k4 2)C o (f(k+x))
Z;" ﬁao(nﬁalm ﬁan(n ’“Z—:f d

_ = Cri(@) + Z fla,, (1) (by (1)

n=0 ‘8a0<1>.8a1(1> © 'ﬁanH(l) n=0 ‘Baoun@alm te :Bana)

= h(x) (by (2)).
this and Lemma 1 imply the theorem.

Corollary 1. h(x) is a decreasing jump function which satisfies
1=hr)ZMx) S h(0) <o, a.e.

Corollary 2. k(%) is a step function with a finite number of steps
if and only if B is periodic. Especially h(x)=1 if and only if § is
rational of order 0.

In what follows we shall investigate the transformation 7 with the
normalized invariant measure p(-)= u(.)/p([0, 1)).
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3. Exactness. A measure preserving transformation T on a
Lebesgue space (X, B, P) is said to be exact if N;_, T-"B={X, 0}.

Rohlin’s criterion [4]. Let U be a countable system of sets of
positive measure on X such that the finite unions of pairwise disjoint
sets A ¢ U form an ensemble everywhere dense in B. If there exists a
positive integer-valued function n(4), A ¢ U, and a positive number q
such that P(T"4A)=1, A ¢ U, and

n(A) P(E)

(4) P(T E)éqP(A)-,
for all measurable set FC A with measurable image T"“E, then T is
exact.

Theorem 2. Ewvery piecewise linear transformation is exact.

Proof. The proof is based on the Rohlin’s criterion. Let
,§ e V(N +1), be given arbitrary and let us denote by & a partition of
(0, 1) into subintervals generated by the points f(k), k=1,2,...,N. We
set U,={AecT-*26; TAeT- "}, n=1,2, ..., U={J;., U, and n(A4)
=n if A ¢ U,. Then, the density and the relation P(T*®A)=1, Ac U,
are obviously satisfied. We must prove that there exists a constant
q:q(ﬁ) satisfying the inequality (4). For any A e U, there exists a
sequence of digits (a,(4), ---,a,(4)) which is admissible in the B—
expansion such that A=(a,(x)=a,(4), ---,a,(x)=a,(A)). Since T is
picewise linear, we have m(T"“E)= 4,4y * * BanayME)=m(E) | m(A),
for any Fe B in A. By this relation and Corollary 1, we obtain
P(T*2E) < M0)*u([0, 1))(P(E)/ P(A)). Thus we may set ¢=h(0)*u([0, 1)).

4, Markov properties. Let x=(a,(x), a,(), - - -) be a S-expansion
of a real number x,0<<x <1, then Tax=(a,(x), a,(x), ---), thatis, T is a
shift transformation of the stochastic process (a,(x),a,(x), - - -), 0<x <1,
with a finite number of states. Since P is T-invariant the process is
stationary.

Theorem 3. Let ﬁ— be rational of order r, then T is a stationary
r-ple Markov chain. r=0 implies the independency of the process.

Lemma 2. Let E be rational of order v and let n be any non-
negative integer. Then for any sequence of digits (¢, ¢,y + + 4 Cp,.) Which
s admissible in the B—expansion, we have
( 5) m((cnn, Cnias ** s Cn+r))=.8cu8ca' o ﬁcnm((cl’ Cay * 00y Cn+r))
where (¢, ¢,y - -+, c)=(a,(W)=c¢;, a()=0¢,, - - -, ax(T)=Cy).

Proof. If n=0, then the relation (5) is trivial. Letn>=1. We
suppose that (5) holds for #—1. Then we have

m((cz’ (ZTIERR cn+r))=ﬁcgﬁca‘ * "Bcnm((cnﬂ’ cn+z, Tty cn+1))'
Therefore, we must prove
( 6 ) m((czy Csy * 0y cn+'r))=ﬁc1m((cv Cyy * vy Cn-w))

for any admissible sequence (¢, ¢y, - - -, C,,,). Here (6) holds obviously
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for ¢,=0,1,...,N—1. Thus it remains to show that (6) holds for
¢,=N. To do this it suffices to prove
( 7) (029 (ZTIR) Cn.,.,,)C [Oy T]-)
Since § is rational of order r, T1 is an endpoint of an interval (¢}, ¢},
-+, ¢p) of length k=r. So we have
(Cz, (T C,H_,,)C[O, T]-) or (cz, (ZTIR) C,,,+T)C[T1, 1)-
But the last relation contradicts the admissibility of the sequence
(N,¢, 5 Cr1). Thus we have the relation (7). By induction the
lemma is proved.
Proof of Theorem 1. By Lemma 2, we have
m(an+r+l(x)=cn+r+1 > a1(x)=cu try an+r(x)= cn+r)
— m((cnn’ cn+2, R cn+r+1)) _ .

N m((cn+17 Cnizs * " *) cn+r)) _—Q(cnﬂ’ ’ Cn+7+l)
where @ is a constant which depends only on the admissible sequence
(Crs1y Crgzs = * * 5 Crypyry). Since E is rational of order 7, h(x) is constant on
every interval (¢, ¢, - -+, ¢,) of length k=#. Then, we have

P(an+r+1(x):cn+r+1 H aq(x):Cn R anw(x): cn+r)=Q(cn+1’ ] cn+r+1)
for any admissible sequence (¢;, ¢,y « - - Cryyyp)-

References

[1] Rényi, A.: Representations for real numbers and their ergodic properties.
Acta Math. Acad. Sci. Hung., 8, 477-493 (1957).

[2] Parry, W.: On the B-expansions of real numbers. Acta Math. Sci. Hung.,
11, 401-416 (1960).

[8] Cigler, J.: Ziffenverteilung in 9-adischen Biichen. Math. Zeit., 75, 8-13
(1961).

[4] Rohlin, V. A.: Exact endomorphisms of a Lebesgue space. Izv Akad. Nauk
SSSR, 25, 499-530 (1961). Amer. Math. Soc. Transl., 39 (2), 1-36 (1964).



