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252. On Wiener Functions of Order m
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(Comm. by Kinjir6 KUNUGI, M. J. A., Dec. 12, 1970)

1. Let £ be an open subset of the n-dimensional Euclidian
space R"(n>2) and f; be a continuous function on the boundary of
20 <i<m). Riquier’s problem for a polyharmonic equation 4™u=0
on 2 is to find a function % such that 4™u=0 in 2 and (—4)''u=f; on
the boundary of 2 for each i1 <i<m).

For a unit disk it was solved by Riquier and for a bounded open
set by M. Ito [2].

In this note we shall show that for an unbounded open subset
its problem can be solved by means of Wiener ideal boundary 4, and
Wiener harmonic boundary Iy, of 2 (Theorem 3).

Let f; be a continuous function on 4,(1<i<m). Then there exists
a function %, ;, ... ;,, On 2 such that

A™Rsy paene iy =0
in 2 and for each ¢ (A<i<m), on I'y
(—A)i_lh(fl,fz’...,fm)———fi
if and only if Q satisfies the condition

JGﬁ?“”(x, Ydy <+ oo
for some point z in 2, where G, being the Green function of £,
Gy (x, y):J . .JGa(x, 2)Gp(2,2,) -+ - Go(2poy WAz, dz,. - A% _s-

2. Let 2 be an open subset of R*. We call a real valued function
% in the class C*™(2) is polyharmonic of order m in Q if we have in 2
n az )m
Y= =0.
Amu (,?31 ox *
For the Green function G, of 2 and an integer ¢>1, we put

GP(x, y)zj. . .jGQ(x, 20G (21, 2) -+ - Go(2s_1, YAz, d2,- - - d7; .

By a suitable normalization we have (—4,)/GP(x,y)=¢, in 2,
where ¢, is the Dirac measure at x.

From now on, let m(>1) be a fixed integer and ¢ be any integer
1<i<m. As to the solution of Riquier’s problem, M. It6 [2] proved

Lemma 1. Let Q be a bounded open subset of R* and (f)™, be a
system of bounded continuous functions on the boundary 02 of £.
Then there exist m positive Radon measures e, ,(1<i<m) on 00, and
the function
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Ho(w; (fo) = 3 [ Fi)de0)

18 polyharmonic of order m in Q.
Remark 1. The above system (¢{2,,)7, of balayaged measures of
(€40, --+,0) on 00 satisfies

jf(y)de;?m(y) —H%)
and for each i(1<i<m)
ff(y)dsgfsm(y)=jH;z<z>Gs;-l><x, Odz

for any bounded continuous function f on 02, where H? is the solution
of the Dirichlet problem in 2 for the boundary value f.

Let 2 be an open subset of R* and {2,};_; be an exhaustion of
namely a sequence of relatively compact open subsets of £ such that
2,C 0., and Uy, 2,=2. Then by Lemma 1 we have a sequence
(e¥%0,)%-1 of positive Radon measures for each i(1<i<m).

Now we shall define Wiener functions of order 7 as follows.

Definition. We shall call a bounded continuous function f on Q2
a Wiener function of order ¢ if for any exhaustion {Q;};., of 2 the

sequence U‘ f(y)dsg’}c,,,c(y)} N converges at each point z in Q.
k=1

We denote by W®(Q) the totality of Wiener functions of order 7

on 2 and for f in W®(L2) we put
hP(x)=lim | f(1)deP .0, (y)
k—oo

and WP (Q)={fe WP(@); h=0 on 2} A<i<m).

We note that a function in W®(Q) (or W{P(Q2)) is a usual Wiener

function (or Wiener potential) on 2 (cf. [1D).
For brevity we say that Q satisfies the condition [i] if

JGS‘”(% YAy <+ oo

for some point z in 2. By the condition [i] we have the finiteness of
the above integral for any point « in 2.

As to the class W% (Q) we shall show

Theorem 1. Let 2 be an open subset of R*. Then we have
WD) =WO(R) and WP(Q)=WP(Q) if and only if 2 satisfies the con-
dition [il.

Proof. Let f be a bounded continuous function on 2 and {2.};,
be an exhaustion of 2. By Remark 1, we have

f (jf (y)deﬂfcgk(y)) G4 (x, 2)dr= jf W delo (),
where G, is the Green function of 2,. If f is in W®(2) then for
each point z in 2, lim | f(¥)de( o, (W) =h (2).
k—o0
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By the condition [i], for each point z in £
H(ff ) dSS,’mk(y)) G4 (w, z)dx‘ < sup [f(x)]- IG%"”(z, Ydy <+ oo,

therefore we know lim | f(y)del,q, (¥) =jh}1>(x)G§§'”(x, 2)dx and so f is

k— o0

in W9(Q). Hence we have W®(Q)cC W*(Q) and similarly W{(Q)
CW®(Q).

We shall show the inverse inclusions W®(Q2)C WP (2) and W (2)
CcCW®(). Its proof is suggested by M. It6.

Let «, be a fixed point in 2 and ¢, be a non-negative C“*~-function
with compact support which is invariant under rotation around x, and

jsozo(y)dy =1.
If f is in W®(Q), then the sequence UH}’k(x)G};;”(x, z)dx}
k=1
converges at each point z in 2, so by the condition [i] the sequence

{ngk @) (jG;;’,;D(x, (- A)i“goxo(z)dz) dx}

oo

oo

converges.
k=1

Since goxo(x)=jG};’,;1)(x, (—A ¢, (2)dz for sufficient large k, we have
jﬂgk(x) ( j G4 (x, z)(—A)i“gozo(z)dz) dz
= [H4@)p. @) da=HEH ).

Hence the sequence ” f (y)degjc,,k(y)}: ) converges at a point x, and so
fisin W®(Q). Similarly we have W (2)C W (2Q).

Conversely if WO(@Q)=W>(Q), 1 being in W?(Q2), we have the
condition [i].

By Theorem 1, we have

Corollary 1. The condition [m] implies

WO =Wo(Q)=-..=W™(Q) and WP QD =WP(Q)=--. =W{™ ().

As to a function A{’ we shall show two lemmas.

Lemma 2. If Q satisfies the condition [i] and f is in W®(Q) then
we have 4'hP=0 in Q.

Proof. Let f be in W®(®Q) and {2,)};., be an exhaustion of 0.

By Remark 1, f F@)de®,o, () = [HIMG§ (@, 2)dz.  Since f is in

W@ ), hj?(x):jhj})(z)GS“”(x, 2)dz. Hence (—A)'hP(@)=hP(x) in 2

and 2 being harmonic, we have 4°A{’ =0 in Q.

Lemma 3. If Q satisfies the condition [il and f isin W®(2), then
S—=(—=D'hE s in WPH(D).

Proof. By Lemma 2, (—4)!'h{ is harmonic, so it is in W*®(Q)
and f—(—A)'AP is in WO(Q).
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Moreover for an exhaustion {2;};., of 2 we have
o - npandeg.q,w
=‘[f(’!/)d5§:,)cnk(?/) _IH?JCA)i—lhy:) (Z)G(,gi,:n(x, z)dz

=[r@)degan) - [(— D 0P @G @, Dz,
then
lim [(7) — (— 1P @), W)
=P @) — [(— DR @GS @, de=1P @ — B @) =0,

and so f—(—A)'h{ is in WP (Q2)=W(2).

3. In this section we always assume that 2 is an open set satis-
fying the condition [m].

Let 2% be a Wiener compactification of 2,4, =02% — Q2 and I'y, be a
harmonic boundary of 2 (cf. [1]). Wenote that 'y ={x € 4y ; f()=0
for any f in W{(Q)}.

We shall show the following

Theorem 2. Let {2,}7., be an exhaustion of 2, then the sequence
{e@.0,}e-1 converges vaguely in Q3 for each point x in Q(A1<i<m), and
if we denote by e its limit, then

S,(j):Seg):FW(Zgigm),
where S,g) 18 the support of the measure 2.

Proof. Weknow that W (2)=C(Q%) (cf. [1] Satz 9.8), so for any
function in C(2}) its restriction on 2 is in W®(Q).

Therefore the sequence U JdeP,, k(y)}: ) converges for any f in
C(R%). Next we shall show S,;ﬂ cI'y. Let f beabounded continuous
function on 4y such that f=0 on 'y, and f* be a continuous function
on 2% such that f*=f on 4. Then f* being in W{(Q),

[rwase@=tim{ rr@ieg.o,m=o.

This means Segvcl“w. Since Ss§01>=FW (cf. [1] Satz 8.5), it suffices to
show SS;DCSS?.

Let f be in C(4y) and f* be in C(2}) such that f*=f on 4.
Then for each Fk,

[rradeso,@=|([r@deem) 6t @, az.
Since the restriction f* on 2 is in W®(2), we have
[ranase @ ={([raraeom) as@, aae.

and so S, CS,w.
x x
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Finally we shall treat Riquier’s problem for an open set £ satis-
fying the condition [m] and show the following

Theorem 3. Let f; bein C(dy) A<Li<m). Then there exists a
function h;, ;, ... 7. 1 Q such that

Amh(fl,fz,'",fm):O
in Q and for each i(1<i<m), on I'y
(_A)i_lh(fl,fav"'yfm)=fi‘

Proof. Let f* be in C(2}%) such that f*=f;, on 4,(1<i<m).

Then by Corollary 1 the restriction of f* on 2 is in W®(Q) and so

n@ = 1wz w.
We put
h(f,,f,)...,fm)(x)= i h}’%(x),

then by Lemma 2, %, ;, ... /., i8 Polyharmonic of order m in £ and for
each 1(1<i<m),
(=D gy g,y (@) = (— D) TRG(2) + kil(—d)i‘lh}kg(x).
Since
51 (- ng@=—07 31 [h3a)6s @ vay)

k=1+1

=[(E - v[n, @61, 92) G, i,

we know it is in W{(@2). On the other hand (—4)""'A{% is in W(Q),
hence (—4)"'h, sy..... sy a1 be continuously extended over 2.
For each point z in 'y, we have
(= gy gy, py @) = (= D IRG(2)
=h{ (@)= f(x).
Remark 2. Conversely if 2 has such a solution as A, ;, ...
then 9 satisfies the condition [m].
Remark 3. If 2 is an unbounded open subset of R*(n>3) with

finite volume, then sup jG,,(x, Ydy < + oo and for any point x in £
xeR

jG;;n-w, Wy < (sup j Gola, y)dy) "<t
xzENR

Hence 2 satisfies the condition [m]. Moreover the point at infinity
being contained in S,g) for each i{(1<i<m), the above theorem may be
an extension of Lemma 1.

4, Let 2 be an open subset of R*(n>2) and p be a non-negative
continuously differentiable function on 2.

We consider on 2 an elliptic differential equation:

Lu=d—p)u=A4du—pu=0.
We shall see that in this case, similarly to the equation 4u=0, the
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above discussions succeed.
If we assume that p is bounded from below by a positive constant,
for the Green function G, , of the equation L,u=0 on 2, we have

S%Ig ij.ﬂ(xy y)d?/ < + .

Hence in this case we know
fG;’(”,:”(x, wdy < ( sup IGp,a(x, y)dy) "<t
for each point « in 2, where o
G (x, y)=f- . pr,,,(x, 2)G, o(21,2) - Gy, o(Zm_o, WA2,d2,- - - A2y s,

and so the condition [m] is satisfied in this case.

Let Q3,6 be a p-Wiener compactification of 2,4y, be its ideal
boundary and I'y, be its harmonic boundary (cf. [3]), then we shall
have analogously to Theorem 38 the following

Theorem 4. We assume that p is bounded from below by a posi-
tive constant. Let f; be in Cldy ) A<i<m). Then there exists a
function k% ., .., . on Q such that (L,)"h?, ;, ... ;»=0 tn 2 and for
each 1(1<i<m), on Iy,

(=L Wy oy py =00
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