252. On Wiener Functions of Order m

By Hidematu TANAKA
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1970)

1. Let Ω be an open subset of the n-dimensional Euclidian space $R^n(n\geq 2)$ and f_i be a continuous function on the boundary of $\Omega(1\leq i\leq m)$. Riquier's problem for a polyharmonic equation $\Delta^m u=0$ on Ω is to find a function u such that $\Delta^m u=0$ in Ω and $(-\Delta)^{i-1}u=f_i$ on the boundary of Ω for each $i(1\leq i\leq m)$.

For a unit disk it was solved by Riquier and for a bounded open set by M. Itô [2].

In this note we shall show that for an unbounded open subset Ω its problem can be solved by means of Wiener ideal boundary Δ_W and Wiener harmonic boundary Γ_W of Ω (Theorem 3).

Let f_i be a continuous function on $\Delta_w(1 \le i \le m)$. Then there exists a function $h_{(f_1,f_2,...,f_m)}$ on Ω such that

$$\Delta^m h_{(f_1, f_2, \dots, f_m)} = 0$$

in Ω and for each $i(1 \le i \le m)$, on Γ_w

$$(-\Delta)^{i-1}h_{(f_1,f_2,...,f_m)}=f_i$$

if and only if Ω satisfies the condition

$$\int G_{\varrho}^{(m-1)}(x,y)dy < +\infty$$

for some point x in Ω , where G_{Ω} being the Green function of Ω ,

$$G_{\varrho}^{(m-1)}(x,y) = \int \cdots \int G_{\varrho}(x,z_1) G_{\varrho}(z_1,z_2) \cdots G_{\varrho}(z_{m-2},y) dz_1 dz_2 \cdots dz_{m-2}.$$

2. Let Ω be an open subset of \mathbb{R}^n . We call a real valued function u in the class $C^{2m}(\Omega)$ is polyharmonic of order m in Ω if we have in Ω

$$\Delta^m u = \left(\sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}\right)^m u = 0.$$

For the Green function G_{g} of Ω and an integer $i \ge 1$, we put

$$G_{\it g}^{(i)}(x,y) = \int \cdots \int G_{\it g}(x,z_1) G_{\it g}(z_1,z_2) \cdots G_{\it g}(z_{i-1},y) dz_1 dz_2 \cdots dz_{i-1}.$$

By a suitable normalization we have $(-\Delta_y)^i G_{\mathcal{B}}^{(i)}(x,y) = \varepsilon_x$ in Ω , where ε_x is the Dirac measure at x.

From now on, let $m(\geq 1)$ be a fixed integer and i be any integer $1 \leq i \leq m$. As to the solution of Riquier's problem, M. Itô [2] proved

Lemma 1. Let Ω be a bounded open subset of R^n and $(f_i)_{i=1}^m$ be a system of bounded continuous functions on the boundary $\partial \Omega$ of Ω . Then there exist m positive Radon measures $\varepsilon_{x,c,\Omega}^{(i)}(1 \leq i \leq m)$ on $\partial \Omega$, and the function

$$H_{\varrho}(x;(f_i)_{i=1}^m)=\sum_{i=1}^m\int f_i(y)darepsilon_{x,c\varrho}^{(i)}(y)$$

is polyharmonic of order m in Ω .

Remark 1. The above system $(\varepsilon_{x,c\rho}^{(i)})_{i=1}^m$ of balayaged measures of $(\varepsilon_x,0,\cdots,0)$ on $\partial \Omega$ satisfies

$$\int f(y)d\varepsilon_{x,c\varrho}^{\scriptscriptstyle (1)}(y) = H_f^\varrho(x)$$

and for each $i(1 \le i \le m)$

$$\int \! f(y) d\varepsilon_{x,c\varrho}^{(i)}(y) \! = \! \int \!\! H_f^\varrho(z) G_\varrho^{(i-1)}(x,z) dz$$

for any bounded continuous function f on $\partial \Omega$, where H_f^{α} is the solution of the Dirichlet problem in Ω for the boundary value f.

Let Ω be an open subset of R^n and $\{\Omega_k\}_{k=1}^{\infty}$ be an exhaustion of Ω namely a sequence of relatively compact open subsets of Ω such that $\overline{\Omega}_k \subset \Omega_{k+1}$ and $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$. Then by Lemma 1 we have a sequence $(\varepsilon_{x_k, \varepsilon R_k}^{(i)})_{k=1}^{\infty}$ of positive Radon measures for each $i(1 \leq i \leq m)$.

Now we shall define Wiener functions of order i as follows.

Definition. We shall call a bounded continuous function f on Ω a Wiener function of order i if for any exhaustion $\{\Omega_k\}_{k=1}^\infty$ of Ω the sequence $\left\{\int f(y)d\varepsilon_{x,e\,\theta_k}^{(i)}(y)\right\}_{k=1}^\infty$ converges at each point x in Ω .

We denote by $W^{(i)}(\Omega)$ the totality of Wiener functions of order i on Ω and for f in $W^{(i)}(\Omega)$ we put

$$h_f^{(i)}(x) = \lim_{k \to \infty} \int f(y) d\varepsilon_{x,c\varrho_k}^{(i)}(y)$$

and $W_0^{(i)}(\Omega) = \{ f \in W^{(i)}(\Omega) ; h_f^{(i)} = 0 \text{ on } \Omega \} (1 \le i \le m).$

We note that a function in $W^{(1)}(\Omega)$ (or $W_0^{(1)}(\Omega)$) is a usual Wiener function (or Wiener potential) on Ω (cf. [1]).

For brevity we say that Ω satisfies the condition [i] if

$$\int G_{\varrho}^{(i-1)}(x,y)dy < +\infty$$

for some point x in Ω . By the condition [i] we have the finiteness of the above integral for any point x in Ω .

As to the class $W^{(i)}(\Omega)$ we shall show

Theorem 1. Let Ω be an open subset of R^n . Then we have $W^{(i)}(\Omega) = W^{(1)}(\Omega)$ and $W^{(i)}_0(\Omega) = W^{(1)}_0(\Omega)$ if and only if Ω satisfies the condition [i].

Proof. Let f be a bounded continuous function on Ω and $\{\Omega_k\}_{k=1}^{\infty}$ be an exhaustion of Ω . By Remark 1, we have

$$\int\!\!\left(\!\!\int\!\!f(y)d\varepsilon_{x,c\varrho_k}^{{\scriptscriptstyle (1)}}(y)\right)G_{\varrho_k}^{{\scriptscriptstyle (i-1)}}(x,z)dx\!=\!\!\int\!\!f(y)d\varepsilon_{z,c\varrho_k}^{{\scriptscriptstyle (i)}}(y),$$

where G_{ϱ_k} is the Green function of Ω_k . If f is in $W^{(1)}(\Omega)$ then for each point x in Ω , $\lim_{k\to\infty}\int f(y)d\varepsilon_{x,e\varrho_k}^{(1)}(y)=h_f^{(1)}(x)$.

By the condition [i], for each point z in Ω

$$\left| \int \! \left(\int \! f(y) d\varepsilon_{x,c\,a_k}^{\scriptscriptstyle (1)}(y) \right) G_{a_k}^{\scriptscriptstyle (i-1)}(x,z) dx \, \right| \leqslant \sup_{x \in a} |f(x)| \cdot \int \! G_a^{\scriptscriptstyle (i-1)}(z,y) dy < + \infty,$$

therefore we know $\lim_{k\to\infty}\int f(y)d\varepsilon_{z,\,c\,a_k}^{(i)}(y)=\int h_f^{(1)}(x)G_g^{(i-1)}(x,z)dx$ and so f is in $W^{(i)}(\mathcal{Q})$. Hence we have $W^{(1)}(\mathcal{Q})\subset W^{(i)}(\mathcal{Q})$ and similarly $W_0^{(1)}(\mathcal{Q})\subset W_0^{(i)}(\mathcal{Q})$.

We shall show the inverse inclusions $W^{(i)}(\Omega) \subset W^{(1)}(\Omega)$ and $W^{(i)}_0(\Omega) \subset W^{(1)}_0(\Omega)$. Its proof is suggested by M. Itô.

Let x_0 be a fixed point in Ω and φ_{x_0} be a non-negative $C^{(i-1)}$ -function with compact support which is invariant under rotation around x_0 and $\varphi_{x_0}(y)dy=1$.

If f is in $W^{(i)}(\Omega)$, then the sequence $\left\{\int H_f^{a_k}(x)G_{a_k}^{(i-1)}(x,z)dx\right\}_{k=1}^{\infty}$ converges at each point z in Ω , so by the condition [i] the sequence $\left\{\int H_f^{a_k}(x)\left(\int G_{a_k}^{(i-1)}(x,z)(-\Delta)^{i-1}\varphi_{x_0}(z)dz\right)dx\right\}_{k=1}^{\infty}$ converges.

Since $\varphi_{x_0}(x) = \int G_{a_k}^{(i-1)}(x,z)(-\Delta)^{i-1}\varphi_{x_0}(z)dz$ for sufficient large k, we have

$$\begin{split} \int & H_f^{a_k}(x) \! \left(\! \int \! G_{a_k}^{\scriptscriptstyle (i_0-1)}(x,z) (-\varDelta)^{i-1} \! \varphi_{x_0}\!(z) dz \right) \! dx \\ &= \! \int \! H_f^{a_k}(x) \varphi_{x_0}\!(x) dx \! = \! H_f^{a_k}\!(x_0). \end{split}$$

Hence the sequence $\left\{\int f(y)d\varepsilon_{x,c\varrho_k}^{(1)}(y)\right\}_{k=1}^{\infty}$ converges at a point x_0 and so f is in $W^{(1)}(\Omega)$. Similarly we have $W_0^{(i)}(\Omega) \subset W_0^{(1)}(\Omega)$.

Conversely if $W^{(i)}(\Omega) = W^{(1)}(\Omega)$, 1 being in $W^{(i)}(\Omega)$, we have the condition [i].

By Theorem 1, we have

Corollary 1. The condition [m] implies

$$W^{(1)}(\Omega) = W^{(2)}(\Omega) = \cdots = W^{(m)}(\Omega) \text{ and } W_0^{(1)}(\Omega) = W_0^{(2)}(\Omega) = \cdots = W_0^{(m)}(\Omega).$$

As to a function $h_f^{(i)}$ we shall show two lemmas.

Lemma 2. If Ω satisfies the condition [i] and f is in $W^{(1)}(\Omega)$ then we have $\Delta^i h_t^{(i)} = 0$ in Ω .

Proof. Let f be in $W^{(1)}(\Omega)$ and $\{\Omega_k\}_{k=1}^\infty$ be an exhaustion of Ω . By Remark 1, $\int f(y)d\varepsilon_{x,c\Omega_k}^{(i)}(y)=\int H_f^{\Omega_k}(z)G_{\Omega_k}^{(i-1)}(x,z)dz$. Since f is in $W^{(i)}(\Omega)$, $h_f^{(i)}(x)=\int h_f^{(1)}(z)G_{\Omega}^{(i-1)}(x,z)dz$. Hence $(-\Delta)^{i-1}h_f^{(i)}(x)=h_f^{(1)}(x)$ in Ω and $h_f^{(1)}$ being harmonic, we have $\Delta^i h_f^{(i)}=0$ in Ω .

Lemma 3. If Ω satisfies the condition [i] and f is in $W^{(1)}(\Omega)$, then $f-(-\Delta)^{i-1}h_f^{(i)}$ is in $W_0^{(1)}(\Omega)$.

Proof. By Lemma 2, $(-\Delta)^{i-1}h_f^{(i)}$ is harmonic, so it is in $W^{(1)}(\Omega)$ and $f-(-\Delta)^{i-1}h_f^{(i)}$ is in $W^{(1)}(\Omega)$.

Moreover for an exhaustion $\{\Omega_k\}_{k=1}^{\infty}$ of Ω we have

then

$$\begin{split} &\lim_{k\to\infty}\int (f(y)\!-\!(-\varDelta)^{i-1}h_f^{(i)}(y))d\varepsilon_{x,c\varrho_k}^{(i)}(y)\\ &=\!h_f^{(i)}(x)\!-\!\int (-\varDelta)^{i-1}h_f^{(i)}(z)G_g^{(i-1)}(x,z)dz\!=\!h_f^{(i)}(x)\!-\!h_f^{(i)}(x)\!=\!0, \end{split}$$

and so $f - (-\Delta)^{i-1} h_f^{(i)}$ is in $W_0^{(i)}(\Omega) = W_0^{(1)}(\Omega)$.

3. In this section we always assume that Ω is an open set satisfying the condition [m].

Let Ω_w^* be a Wiener compactification of Ω , $\Delta_w = \Omega_w^* - \Omega$ and Γ_w be a harmonic boundary of Ω_w^* (cf. [1]). We note that $\Gamma_w = \{x \in \Delta_w ; f(x) = 0 \}$ for any f in $W_0^{(1)}(\Omega)$.

We shall show the following

Theorem 2. Let $\{\Omega_k\}_{k=1}^{\infty}$ be an exhaustion of Ω , then the sequence $\{\varepsilon_{x,ca_k}^{(i)}\}_{k=1}^{\infty}$ converges vaguely in Ω_W^* for each point x in $\Omega(1 \leq i \leq m)$, and if we denote by $\varepsilon_x^{(i)}$ its limit, then

$$S_{\varepsilon_x^{(i)}} = S_{\varepsilon_x^{(1)}} = \Gamma_W(2 \leq i \leq m),$$

where $S_{\epsilon_x^{(i)}}$ is the support of the measure $\varepsilon_x^{(i)}$.

Proof. We know that $W^{(1)}(\Omega) = C(\Omega_W^*)$ (cf. [1] Satz 9.3), so for any function in $C(\Omega_W^*)$ its restriction on Ω is in $W^{(i)}(\Omega)$.

Therefore the sequence $\left\{\int f(y)d\varepsilon_{x,c\varrho_k}^{(i)}(y)\right\}_{k=1}^{\infty}$ converges for any f in $C(\Omega_W^*)$. Next we shall show $S_{\epsilon_x^{(i)}} \subset \Gamma_W$. Let f be a bounded continuous function on Δ_W such that f=0 on Γ_W and f^* be a continuous function on Ω_W^* such that $f^*=f$ on Δ_W . Then f^* being in $W_0^{(i)}(\Omega)$,

$$\int\!\! f(y) d\varepsilon_x^{\scriptscriptstyle (i)}(y) = \lim_{k\to\infty} \int\!\! f^*(y) d\varepsilon_{x,c\,a_k}^{\scriptscriptstyle (i)}(y) = 0.$$

This means $S_{\epsilon_x^{(1)}} \subset \Gamma_W$. Since $S_{\epsilon_x^{(1)}} = \Gamma_W$ (cf. [1] Satz 8.5), it suffices to show $S_{\epsilon_x^{(1)}} \subset S_{\epsilon_x^{(1)}}$.

Let f be in $C(\Delta_w)$ and f^* be in $C(\Omega_w^*)$ such that $f^*=f$ on Δ_w . Then for each k,

$$\int \! f^*(y) d\varepsilon_{x,c\varrho_k}^{\scriptscriptstyle (i)}(y) \! = \! \int \! \left(\int \! f^*(y) d\varepsilon_{z,c\varrho_k}^{\scriptscriptstyle (1)}(y) \right) G_{\varrho_k}^{\scriptscriptstyle (i-1)}(x,z) dz.$$

Since the restriction f^* on Ω is in $W^{\scriptscriptstyle (1)}(\Omega)$, we have

$$\int f(y)d\varepsilon_x^{(i)}(y) = \int \left(\int f(y)d\varepsilon_z^{(1)}(y)\right)G_x^{(i-1)}(x,z)dz.$$

and so $S_{\epsilon_x^{(1)}} \subset S_{\epsilon_x^{(i)}}$.

Finally we shall treat Riquier's problem for an open set Ω satisfying the condition [m] and show the following

Theorem 3. Let f_i be in $C(\Delta_w)$ $(1 \le i \le m)$. Then there exists a function $h_{(f_1,f_2,...,f_m)}$ in Ω such that

$$\Delta^m h_{(f_1,f_2,...,f_m)} = 0$$

in Ω and for each $i(1 \le i \le m)$, on Γ_w

$$(-\Delta)^{i-1}h_{(f_1,f_2,...,f_m)}=f_i.$$

Proof. Let f_i^* be in $C(\Omega_w^*)$ such that $f_i^* = f_i$ on $\Delta_w(1 \le i \le m)$. Then by Corollary 1 the restriction of f_i^* on Ω is in $W^{(i)}(\Omega)$ and so

$$h_{f_i^*}^{(i)}(x) = \int f_i(y) d\varepsilon_x^{(i)}(y).$$

We put

$$h_{(f_1,f_2,...,f_m)}(x) = \sum_{i=1}^m h_{f_i^*}^{(i)}(x),$$

then by Lemma 2, $h_{(f_1,f_2,...,f_m)}$ is polyharmonic of order m in Ω and for each $i(1 \le i \le m)$,

$$(-\varDelta)^{i-1}h_{(f_1,f_2,...,f_m)}(x) = (-\varDelta)^{i-1}h_{f_k^*}^{(i)}(x) + \sum_{k=i+1}^m (-\varDelta)^{i-1}h_{f_k^*}^{(k)}(x).$$

Since

$$\begin{split} &\sum_{k=i+1}^{m} (-\varDelta)^{i-1} h_{f_{k}^{(k)}}^{(k)}(x) = (-\varDelta)^{i-1} \left(\sum_{k=i+1}^{m} \int h_{f_{k}^{(k)}}^{(1)}(y) G_{\varrho}^{(k-1)}(x, y) dy \right) \\ &= \int \left(\sum_{k=1}^{m-i} (-1)^{k} \int h_{f_{k}^{(1)}}^{(1)}(z) G_{\varrho}^{(k-1)}(y, z) dz \right) G_{\varrho}(x, y) dy, \end{split}$$

we know it is in $W_0^{(1)}(\Omega)$. On the other hand $(-\Delta)^{i-1}h_{f_k^*}^{(i)}$ is in $W^{(1)}(\Omega)$, hence $(-\Delta)^{i-1}h_{(f_1,f_2,\dots,f_m)}$ can be continuously extended over Ω_W^* .

For each point x in Γ_w , we have

$$(-\Delta)^{i-1}h_{(f_1,f_2,...,f_m)}(x) = (-\Delta)^{i-1}h_{f_1^i}^{(i)}(x) = h_{f_1^i}^{(1)}(x) = f_i(x).$$

Remark 2. Conversely if Ω has such a solution as $h_{(f_1,f_2,...,f_m)}$, then Ω satisfies the condition [m].

Remark 3. If Ω is an unbounded open subset of $R^n(n \ge 3)$ with finite volume, then $\sup_{x \in \Omega} \int G_{g}(x,y) dy < +\infty$ and for any point x in Ω

$$\int\!\!G_{\varrho}^{\scriptscriptstyle(m-1)}(x,y)dy \leq \Bigl(\sup_{x\in\varrho}\int\!\!G_{\varrho}(x,y)dy\Bigr)^{\scriptscriptstyle m-1} < +\infty.$$

Hence Ω satisfies the condition [m]. Moreover the point at infinity being contained in $S_{\epsilon_x^{(i)}}$ for each $i(1 \le i \le m)$, the above theorem may be an extension of Lemma 1.

4. Let Ω be an open subset of $R^n(n \ge 2)$ and p be a non-negative continuously differentiable function on Ω .

We consider on Ω an elliptic differential equation:

$$L_p u = (\Delta - p)u = \Delta u - pu = 0.$$

We shall see that in this case, similarly to the equation $\Delta u = 0$, the

above discussions succeed.

If we assume that p is bounded from below by a positive constant, for the Green function $G_{p,\rho}$ of the equation $L_p u = 0$ on Ω , we have

Sup
$$\int_{x\in g}G_{p,g}(x,y)dy<+\infty$$
. Hence in this case we know

$$\int\! G_{p,\,\varrho}^{\scriptscriptstyle (m-1)}(x,y)dy \leq \Big(\sup_{x\in\varrho}\int\! G_{p,\,\varrho}(x,\,y)dy\Big)^{^{m-1}}\!\!<\!+\infty$$

for each point x in Ω , where

$$G_{p,\varrho}^{(m-1)}(x,y) = \int \cdots \int G_{p,\varrho}(x,z_1) G_{p,\varrho}(z_1,z_2) \cdots G_{p,\varrho}(z_{m-2},y) dz_1 dz_2 \cdots dz_{m-2},$$

and so the condition [m] is satisfied in this case.

Let $\Omega_{w_p}^*$ be a p-Wiener compactification of Ω, Δ_{w_p} be its ideal boundary and Γ_{W_p} be its harmonic boundary (cf. [3]), then we shall have analogously to Theorem 3 the following

Theorem 4. We assume that p is bounded from below by a positive constant. Let f_i be in $C(\Delta_{W_n})$ $(1 \le i \le m)$. Then there exists a function $h^p_{(f_1,f_2,...,f_m)}$ on Ω such that $(L_p)^m\overline{h}^p_{(f_1,f_2,...,f_m)}=0$ in Ω and for each $i(1 \le i \le m)$, on Γ_{W_p} $(-L_p)^{i-1}h_{(f_1,f_2,...,f_m)}^p = f_i.$

$$(-L_p)^{i-1}h^p_{(f_1,f_2,\cdots,f_m)}=f_i$$

References

- [1] C. Constantinescu and A. Cornea: Ideale Ränder Riemannscher Flächen. Springer-Verlag (1963).
- [2] M. Itô: Sur les fonctions polyharmoniques et le problème de Riquier. Nagoya Math. J., 37, 81-90 (1970).
- [3] H. Tanaka: On Wiener compactification of a Riemann surface associated with the equation $\Delta u = pu$. Proc. Japan Acad., 45, 675-679 (1969).