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251. Some Existence Theorems in Cluster Set Theory

By Shinji YAMASHITA
Mathematical Institute, T6hoku University

(Comm. by Kinjir8 KUNUGI, M. J. )., Dec. 12, 1970)

1o Let C be the unit circle and D be the open unit disk in the
complex plane.

Theorem 1. There exists a holomorphic function f in D for
which the set I(f) of Plessner points [3, p. 147] is residual [3, p. 75]
on C and of logarithmic measure [7, p. 64] zero.

Theorem 2. There exists a bounded univalent holomorphic func-
tion f in D for which the set M(f) of Meier points [3, p. 153] is of
logarithmic measure zero.

Furthermore, we obtain some improvements of Bagemihl-Seidel’s
results [2, p. 191, Corollaries 3 5], one of which may be stated as

Theorem 3. There exist a holomorphic function f in D and a
subset S of C, being of logarithmic measure zero, such that the radial
cluster set [3, p. 72] of f at any point of C-S coincides with the unit
circle.

Remark 1o A bounded set of logarithmic measure zero is known
to be of logarithmic capacity zero. In Remark 3 of the next section
we ascertain this for our special example S.

I wish to express my warmest thanks to Prof. K. Hatano for
valuable conversations.

2. We construct a subset S of C satisfying the following three
conditions"

( i ) C-S is of first Baire category on C.
(ii) SisaG, subsetofC.
(iii) The logarithmic measure of S is zero.
Let K={z,...,z,...} be a countable dense subset of C and let

e,..., e,.., be a sequence of positive numbers such that e-0 as
k-oo. Let ( be an open disk containing z whose radius is

r exp(- 2 /e) (k, n= 1, 2, ..). Let

__
and let (’]=.

Then S= C is the desired one. Indeed, for any k, the closed set
C- is nowhere dense on C since CK is open and dense on C.
Therefore the set

( ) c-s- ) (c-,)

is of first category on C. To prove (iii) we use the same notation as
in [7, p. 63 ft.] with h(t)= {log (1/ t)}-. We use "disks" instead of
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"squares" in p. 63 of [7]; this is not an essential change. Then, since
(n-- 1, 2, ...) cover S and r exp(- 1 /e)

_
p, we have

H(p) (for S)<= h(rn)= (e/2)--e.
R=I R=I

This means that H(p)O as k-, which, combined with p-.0
as k-c, proves that the logarithmic measure of S is zero.

Remark 2. Generalizations to higher dimensional spaces or to
metric spaces under the condition that C is a perfect set in the con-
sidered spaces are fairly easy. Prof. Hatano communicated orally
that the condition (iii) muy well be generalized to "Hausdorff measure".

Remark 3. By ErdSs-Gillis’s theorem [7, p. 66] combined with
(iii) the inner logarithmic capacity and hence the logarithmic capacity
of S is zero since S is capacitable by (ii). Consequently our example
is simpler and more general than Kishi-Nakai’s [4].

3. By Lappan’s theorem [5, Theorem 2] there exists a holomor-
phic function f in D for which I(f)--S since S is a G subset of C.
This proves Theorem 1.

We apply Bagemihl’s theorem [1] to the set C-S. Then there
exists a bounded univalent holomorphic function f in D such that
M(f) (C-S) (empty). Theorem 2 follows from M(f) S and (iii).

Since C-S is F of first category and of the form of (.) on C we
have the improvements of Corollaries 35 in [2, p. 191] in the sense
that the subsets of C of exceptional character are of logarithmic meas-
ure zero.

Remark 4. Bagemihl’s proof of his theorem in [1] depends in
part on a theorem of Lohwater and Piranian [6, p. 7, Theorem 1’].
We remark that some theorems in [6] may well be applied to our F
set C-S. For example, we have:

There exists a bounded univalent holomorphic function f in D
such that f has a radial limit f() at every point e C and that the
function f() on C is discontinuous at every e C-S and is continuous
at every e S.
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