251. Some Existence Theorems in Cluster Set Theory

By Shinji YAMASHITA

Mathematical Institute, Tôhoku University

(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1970)

1. Let C be the unit circle and D be the open unit disk in the complex plane.

Theorem 1. There exists a holomorphic function f in D for which the set I(f) of Plessner points [3, p. 147] is residual [3, p. 75] on C and of logarithmic measure [7, p. 64] zero.

Theorem 2. There exists a bounded univalent holomorphic function f in D for which the set M(f) of Meier points [3, p. 153] is of logarithmic measure zero.

Furthermore, we obtain some improvements of Bagemihl-Seidel's results [2, p. 191, Corollaries $3\sim5$], one of which may be stated as

Theorem 3. There exist a holomorphic function f in D and a subset S of C, being of logarithmic measure zero, such that the radial cluster set [3, p. 72] of f at any point of C-S coincides with the unit circle.

Remark 1. A bounded set of logarithmic measure zero is known to be of logarithmic capacity zero. In Remark 3 of the next section we ascertain this for our special example S.

I wish to express my warmest thanks to Prof. K. Hatano for valuable conversations.

- 2. We construct a subset S of C satisfying the following three conditions:
 - (i) C-S is of first Baire category on C.
 - (ii) S is a G_{δ} subset of C.
 - (iii) The logarithmic measure of S is zero.

Let $K = \{z_1, \dots, z_n, \dots\}$ be a countable dense subset of C and let $\varepsilon_1, \dots, \varepsilon_k, \dots$ be a sequence of positive numbers such that $\varepsilon_k \to 0$ as $k \to \infty$. Let δ_{kn} be an open disk containing z_n whose radius is $r_{kn} = \exp(-2^n/\varepsilon_k)$ $(k, n = 1, 2, \dots)$. Let $\delta_k = \bigcup_{n=1}^{\infty} \delta_{kn}$ and let $\delta = \bigcap_{k=1}^{\infty} \delta_k$. Then $S = \delta \cap C$ is the desired one. Indeed, for any k, the closed set $C - \delta_k$ is nowhere dense on C since $\delta_k \cap C \supset K$ is open and dense on C. Therefore the set

$$(*) C-S = \bigcup_{k=1}^{\infty} (C-\delta_k)$$

is of first category on C. To prove (iii) we use the same notation as in [7, p. 63 ff.] with $h(t) = \{\log (1/t)\}^{-1}$. We use "disks" instead of

"squares" in p. 63 of [7]; this is not an essential change. Then, since δ_{kn} $(n=1,2,\cdots)$ cover S and $r_{kn} < \exp(-1/\varepsilon_k) \equiv \rho_k$, we have

$$H(\rho_k)$$
 (for $S) \leq \sum_{n=1}^{\infty} h(r_{kn}) = \sum_{n=1}^{\infty} (\varepsilon_k/2^n) = \varepsilon_k$.

This means that $H(\rho_k) \to 0$ as $k \to \infty$, which, combined with $\rho_k \to 0$ as $k \to \infty$, proves that the logarithmic measure of S is zero.

- Remark 2. Generalizations to higher dimensional spaces or to metric spaces under the condition that C is a perfect set in the considered spaces are fairly easy. Prof. Hatano communicated orally that the condition (iii) may well be generalized to "Hausdorff measure".
- Remark 3. By Erdös-Gillis's theorem [7, p. 66] combined with (iii) the inner logarithmic capacity and hence the logarithmic capacity of S is zero since S is capacitable by (ii). Consequently our example is simpler and more general than Kishi-Nakai's [4].
- 3. By Lappan's theorem [5, Theorem 2] there exists a holomorphic function f in D for which I(f)=S since S is a G_{δ} subset of C. This proves Theorem 1.

We apply Bagemihl's theorem [1] to the set C-S. Then there exists a bounded univalent holomorphic function f in D such that $M(f) \cap (C-S) = \emptyset$ (empty). Theorem 2 follows from $M(f) \subset S$ and (iii).

Since C-S is F_{σ} of first category and of the form of (*) on C we have the improvements of Corollaries $3\sim 5$ in [2, p. 191] in the sense that the subsets of C of exceptional character are of logarithmic measure zero.

Remark 4. Bagemihl's proof of his theorem in [1] depends in part on a theorem of Lohwater and Piranian [6, p. 7, Theorem 1']. We remark that some theorems in [6] may well be applied to our F_{σ} set C-S. For example, we have:

There exists a bounded univalent holomorphic function f in D such that f has a radial limit $f(\zeta)$ at every point $\zeta \in C$ and that the function $f(\zeta)$ on C is discontinuous at every $\zeta \in C - S$ and is continuous at every $\zeta \in S$.

References

- [1] F. Bagemihl: On the sharpness of Meier's analogue of Fatou's theorem. Israel J. Math., 4, 230-232 (1966).
- [2] F. Bagemihl and W. Seidel: Some boundary properties of analytic functions. Math. Z., 61, 186-199 (1954).
- [3] E. F. Collingwood and A. J. Lohwater: The Theory of Cluster Sets. Cambridge (1966).
- [4] M. Kishi and M. Nakai: Linear set of the second category with zero capacity. Proc. Japan Acad., 44, 633-635 (1968).

- [5] P. Lappan: A characterization of Plessner points. Bull. London Math. Soc., 2, 60-62 (1970).
- [6] A. J. Lohwater and G. Piranian: The boundary behavior of functions analytic in a disk. Ann. Acad. Sci. Fenn. Ser. A I Math., 239, 1-17 (1957).
- [7] M. Tsuji: Potential Theory in Modern Function Theory. Tokyo (1959).