244. A Criterion for Boundedness of a Linear Map from any Banach Space into a Banach Function Space*)

By J. DIESTEL

(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1970)

[Abstract. Let (X, Λ, μ) be a totally sigma-finite complete measure space, ρ be a function norm with associate seminorm ρ' , Y be a Banach space. If $L\rho$ is a Banach function space then for a linear mapping $T\colon Y{\to}L\rho$ be continuous it is necessary and sufficient that given $E\in \Lambda$ with $\rho'(\chi_E)<\infty$ the functional T_E defined by $T_Ey=\int (Ty)(x)\chi_E(x)d\mu(x)$ is continuous. It is noted that the collection $\{E\in\Lambda\colon \mu(E), \rho'(\chi_D)<\infty\}$ is sufficient to generate the same integration theory as Λ and if ρ satisfies the Fatou property this collection even generates (algebraically and isometrically) the function space $L\rho$.]

This note is based entirely on the notes of Luxemburg and Zaanen [13], a knowledge of which, will be assumed throughout; the notations of those authors will be preserved and references to [13] Will simply note the particular results of [13] without further modification. Of course, reference to papers other than [13] will be modified by the appropriate reference list number.

Theorem. Let ρ be a function norm satisfying the Riesz-Fischer property (so $L\rho$ is a Banach function space); suppose that Y is a Banach space and that $T: Y \rightarrow L\rho$ is a linear mapping.

Then in order that T be continuous it is necessary and sufficient that the following hold: given $E \in \Lambda$ such that $\chi_E \in L\rho'$, the linear functional T_E defined on Y to the scalar field by

$$T_E y = \int_E (Ty)(x) d\mu(x)$$

be a number of Y'.

Proof. Necessity follows immediately from Lemma 13.1.

To prove sufficiency, we note that since ρ is a function norm it follows from Corollary 11.5 that ρ' is saturated (in fact, ρ 's being a norm is equivalent to ρ' 's being saturated), so that by Theorem 8.7 there exists a sequence of subsets X_n of X satisfying $X_n \nearrow X$, $\mu(X_n) < \infty$, and $\rho'(\chi_{X_n}) < \infty$ (of course, $X_n \in \Lambda$; for the rest of the proof we will assume the sequence $\{X_n\}$ to be chosen according to these requirements.

We now consider the linear mapping $T: Y \rightarrow L\rho$. We will show

^{*} The research for this paper was supported in part by West Georgia College Faculty Research Grant No. 699.

that T is continuous by showing its graph to be closed, whence as Y and $L\rho$ are Banach spaces we can apply the closed graph theorem to yield T's continuity.

Let $y_m \in Y$ for $m=0,1,\cdots$ and $f_m \in L\rho$ for $m=0,1,\cdots$. Suppose for $m=1,2,\cdots$, that $Ty_m=f_m$ and that $y_m\to y_0$ (in Y) and $f_m\to f_0$ (in $L\rho$ -norm). Fix n momentarily and consider the set X_n . For each set $E\in A$, such that $E\subseteq X_n$, we have $\rho'(\chi_E)\leq \rho'(\chi_{X_n})<\infty$, so that the linear functional $T_E\in Y'$ in particular,

$$\begin{split} \int_{E} (Ty_0)(x) d\,\mu(x) &= T_E y_0 \\ &= \lim_{m} T_E y_m \\ &= \lim_{m} \int_{E} (Ty_m)(x) d\,\mu(x) \\ &= \lim_{m} \int_{E} f_m(x) d\,\mu(x) \\ &= \int_{E} f_0(x) d\,\mu(x) \end{split}$$

by the fact that (by Lemma 13.1) convergence in $L\rho$ is stronger than the L_1 -convergence on E's for which $\rho'(\chi_E) < \infty$. Thus, for each $E \in \Lambda$, satisfying $E \subseteq X_n$ we have

$$\int_{E} (Ty_0)(x)d\mu(x) = \int_{E} f_0(x)d\mu(x).$$

Thus, by the Radon-Nikodym theorem $Ty_0 = f_0(\mu$ -a.e.) on X_n . But then,

$$Ty_0 = \lim_n \chi_{X_n} \cdot Ty_0$$

=
$$\lim_n \cdot \chi_{X_n} \cdot f_0 = f_0$$

holds μ -a.e. Thus, Yy_0 and f_0 are—as members of $L\rho$ -identical and T's graph is closed.

Several remarks seem appropriate; they are in a sense directly related to the above theorem while they might be considered to be of some independent interest.

Suppose ρ is any function norm. Define $V\rho$ to be the collection $\{E \in \Lambda \colon \mu(E), \rho'(\chi_E) < \infty\}$

It is clear that $V\rho$ is a sub-ring of Λ (in fact, $V\rho$ is even an ideal in the Boolean algebra Λ [12]) which contains all the μ -null sets and (as is readily seen using Theorem 6. B of [12], along with Corollary 11.5 and Theorem 8.7) generates all of Λ .

Suppose we denote by $v\rho$ the restriction of μ to $V\rho$. Then, in the terminology of Bogdanowicz (1), triple $(X, V\rho, v\rho)$ forms a volume space. In a sequence of papers ([1], [2], [3], [4], and [5]), Bogdanowicz has developed an approach to the theory of integration and measurable functions generated by a volume space; in another sequence of papers ([6], [7], [8], and [9]), he related the above approach to the Classical

measure-theoretic approaches and gave necessary and sufficient conditions for different volumes and measures to generate the same (algebraically and isometrically) classes of Lebesgue-Bochner summable functions and identical (generalized) Lebesgue-Bochner-Stieltjes type integrals.

Using his results, as well as, the above remarks on the volume space $(X, V\rho, v\rho)$, it is a painless exercise to establish that the spaces of Lebesgue-Bochner integrable functions generated by the volume space $(X, V\rho, v\rho)$ and the measure space (x, Λ, μ) are the same (algebraically and isometrically).

It follows from this, using the techniques of the papers cited above, that the spaces of Lebesgue-Bochner measurable functions, L^p -spaces and even the Orlicz spaces of Lebesgue-Bochner measurable functions are identical (algebraically and, when applicable, isometrically) whether generated by $(X, V\rho, v\rho)$ or (X, Λ, μ) .

Pursueing this train of thought a bit further, note that if ρ also satisfies the Fatou property then ρ is definable by means of integrals of members of its associate space $L\rho'$; in fact, $\rho=\rho''$ so $\rho(f)=\sup\left\{\int |f|\,gd\mu\colon\rho'(g)\leq 1\right\}$ note that ρ' satisfies the Fatou property, thus by Theorem 20.B of [12], we may assume the g's in the above definition to be simple functions; again, it is easily shown that $(X,V\rho,v\rho)$ generates the same space $L\rho$ as does (X,Λ,μ) in the sense that given $f\in L\rho$ (X,Λ,μ) then $\rho(f)$ can be written in the form

$$\rho(f) = \sup \left\{ \int |f| \, s dv \, \rho \right\}$$

where the supremum is taken over all $V\rho$ -simple functions s such that $\rho'(s) \leq 1$, and the above integral is the one discussed in [3].

Finally we remark that the above theorem is in a certain sense an improvement of the results contained in Gretsky's Memoir [11] on pages 11–19; it is proved under considerably more general hypotheses on the function norm ρ than Grestsky's theorems. However, Gretsky's results are considerably more pleasing in the sense that he (through use of the additional hypotheses) obtains precise estimates involving the norm of the operator T as an operator and the norm of a related set function defined on $V\rho$ (which involves only the constant found in Amemiya's theorem (5.5)); of course, this is done by avoiding use of the closed graph theorem.

References

[1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sci. (USA), 53, 492-498 (1965).

- [2] Bogdanowicz, W. M.: An approach to the theory of L_p spaces of Lebesgue-Bochner summable functions and generalized Lebesgue-Bochner-Stieltjes integral. Bull. Acad. Pol. Sci., 13, 793-800 (1965).
- [3] —: An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure. Math. Ann., **164**, 251-269 (1966).
- [4] —: An approach to the theory of integration and theory of Lebesgue-Bochner measurable functions on locally compact spaces. Math. Ann., 171, 219-238 (1967).
- [5] —: An approach to the theory of integration generated by Daniell functionals and representations of linear continuous functionals. Math. Ann., 173, 34-52 (1967).
- [6] —: Existence and uniqueness of extensions of volumes and the operation of completion of a volume. I. Proc. Japan Acad., 42, 571-576 (1966).
- [7] —: On volumes generating the same Lebesgue-Bochner integration. Proc. Nat. Acad. Sci. (USA), **56**, 1399-1405 (1966).
- [8] —: Relations between complete integral semi norms and complete volumes. Proc. Japan Acad., 43, 286-289 (1967).
- [9] —: Relations between volumes and measures. Proc. Japan Acad., 43, 290-294 (1967).
- [10] Diestel, J.: An approach to the theory of Orlicz spaces of Lebesgue-Bochner measurable functions (to appear in Math. Ann.).
- [11] Gretsky, N.: Representation theorems on Banach function spaces. Memoirs of the American Mathematical Society, No. 84 (1968).
- [12] Halmos, P. R.: Measure Theory. D. Van Nostrand Co. New York (1950).
- [13] Luxemburg, W. A. J., and Zaanen, A. C.: Notes on Banach function spaces.
 Proc. Acad. Sci. Amsterdam (Indag. Math.), Note I: A66, 135-147 (1963), Note II: A66, 148-153 (1963), Note III: A66, 239-250 (1963), Note IV: A66, 251-263 (1963), Note V: A66, 496-504 (1963).