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O. In our previous note [9] we have presented a global existence
theorem of real analytic solutions for a linear differential operator
P(D) with constant coefficients assuming condition (1) below.

The principal symbol P() of P(D) is real and of simple char-
( 1 acteristics, i.e., grad, P:/:0 whenever P($)=0, where is a

non-zero real cotangent vector.
That is, denoting by (f2) the spa.ce of real analytic functions on 2
cR, we have obtained a real analytic solution u(x) of P(D)u(x)--f(x)
for any f(x) belonging to (2) under some geometrical conditions on
/2. (Kawai [9] Theorem 4.)

The purpose of this note is to extend the results of Kawai [9] in
two ways, i.e., in 1 we treat differential operators with constant
coefficients not necessarily satisfying condition (1) and in 2 we treat
strictly hyperbolic operators with real analytic coefficients defined on a
real analytic manifold.

In this note we use the same notations as in our previous note [9]
and do not repeat their definitions if there is no fear of confusions.

The details and complete arguments will be given somewhere else.
1. In this paragraph we use the notion of "localization of dif-

ferential operators with constant coefficients", which is due to Atiyah,
Bott and Grding [2]. Using the notion of localization Andersson [l]
introduced the notion of locally hyperbolic operators and investigated the
(analytic) singular support of their elementary solutions. (Andersson
[1] Definition 3.2. Such operators are considered also in Kawai [11]
independently.) In the sequel we follow Andersson [1] and Atiyah,
Bott and Grding [2] in terminology and notations and do not repeat
the definitions" roughly speaking a locally hyperbolic operator with
constant coefficients is a differential operator whose localization P,o(D)
is hyperbolic with respect to some direction v(0). The inner core of
Po(D), i.e., the component of { e R (Po)() :/: 0} containing v(0), is
denoted by T’(P,o, v(0)) and its dual cone by K(P,o, v(0)), where we
denote by (P,0)() the principal symbol of P,o(D). We remark that
we need not pose any conditions on lower order terms of P(D), which
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are posed in Andersson [1], since we use hyperfunctions, not distribu-
tions, in the below. In the sequel we abbreviate K(Po, v($0)) to K0 for
short.

Theorem 1. Let a relatively compact domain with smooth
boundary in R be given in the form {xl (x) 0} by a real valued real
analytic function (x) defined in a neighbourhood of 9. Assume that
P(D) is a locally hyperbolic operator and that the domain tO satisfies
the following conditions (2) and (3). Then P(D)(/2)=(t) holds.

If Xo belongs to the boundary of [2 and P(grad (x)l__o)--0,
then either (Ko + Xo) [2 or (-Ko+ xo) [2-- holds, where

( 2 ) o denotes grad (f(x)I--o and +_ Ko + Xo denotes the translate of
the cone +_ Ko whose vertex is at Xo.
There exists a family of open sets {N}= which satisfies the
/ollowing
For any point x in the boundary of we can find some neigh-
bourhood N of x such that for any non-zero real cotangent

(3)
vector satisfying P()=0 either (K + x) (2\(x}) N-- or

(--K + x) (\{x}) N-- holds.
The proof of this theorem is just the same as that of Theorem 4

of Kawai [9]. We again emphasize the act that the theory of sheaf
5’ (Sato [14] [16]), especially the flabbiness of sheaf ’ (Kashiwara [5]),
plays an essential role in our proof.

2. In this paragraph we state global existence theorems for
strictly hyperbolic operators P(x, D) whose coefficients are real analytic
functions defined on a real analytic manifold under the assumption of
global hyperbolicity on P given in Definition 2 below. Theorem 4 and
Theorem 5 treat the global existence of hyperfunction solutions,
Theorem 6 and Theorem 7 treat the global existence of real analytic
solutions. The main idea of this paragraph which is not included in
our previous note [9], i.e., the notion of global hyperbolicity, is due to
Leray [12]. (See also the exposition of Bruhat [3].)

In the sequel we consider an m-th order linear differential operator
P(x, D) with real analytic coefficients on an n-dimensional real analytic
manifold V. We assume urther that V is endowed with a Riemanian
metric and becomes complete with respect to the metric.

Definition 2 (Globally and strictly hyperbolic operators). A linear
partial differential operator P(x, D) is said to be globally and strictly
hyperbolic on V if
(4) It is strictly hyperbolic on V.
and

For any two points x and y in V all time-like paths joining x
(5)

and y have a bounded length.
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This definition is due to Leray [12]. (See also Bruhat [3].) In the
sequel we omit the adjective "strict" for short. Using this assumption
of global hyperbolicity Leray [12] has given a penetrating study of the
geometry of emissions (See Leray [12] Chapter VI 4 for the definition
of emission) and used it to the proof of global existence of solutions in
the framework of Sobolev space. (Leray [12] Part II, especially
Chapter VII.)

Now we combine his geometrical study of emissions with our con-
struction of local elementary solutions for P(x, D) (Kawai [8] 2, see
also Kawai [6])and our study of the location of its sigularities using
the theory of sheaf 5’ (Kawai [8] 3, see also Kawai [7]). Then we
obtain the following

Theorem :. Assume that P(x, Dx) is globally hyperbolic on V in
the sense, of Definition 2. Then we have the elementary solution E(x, y)

for (x, y) V V satisfying the following conditions (6) and (7).
(6) supp E(x, y)(y), where (y) denotes the emission of y.

s. s. E(x, y) a {(x, y;
e S*(V V)](x, ) and (y,--7) are on the same bicharacteristic
strip of P(x, Dx) with x e C(y)}. Here S*(V V) denotes the
cotangential sphere bundle of V V and S. S. E(x, y) denotes the
support of E(x, y) regarded as the section of sheaf defined on

( 7 ) cotangential sphere bundle, i.e., the support of (E(x, y)), where

fl denotes the sur]ective sheaf homomorphism from the sheaf of
germs of hyperfunctions to the direct image of sheaf C under
the canonical projection from the cotangential sphere bundle
to the base space. About the details of sheaf C we refer the
reader to Sato [16].

Using the elementary solution E(x, y) given in Theorem 3 we obvi-
ously have the following Theorem 4, since the sheaf of germs of hyper-
functions

_
is flabby.

Theorem 4. Let P(x,D) be globally hyperbolic. Then for any
relatively compact domain tO in V we have P(x, Dx)(9)-([2), where
_([2) denotes the space of hyperfunctions on tO.

Remark 1o If D is "compact toward the past" (Leray [12] Defini-
tion 100), this theorem holds.

Remark 2. Since we consider hyperfunction solutions, we need
not pose any conditions on the shape of 9. (Cf. Harvey [4].)

Theorem 5. Let P(x,D) and be the same as in Theorem 4.
Assume further that a non-singular real analytic hypersurface
S- {x s(x)=O} satisfies the following condition.

For any Xo in S the differential operator P(x, Dx) is hyperbolic
(s)

with respect to grad
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Then the following Cauchy problem (9) has a hyperfunction solution
u(x) if f(x) is a hyperfunction defined on tO which depends real ana-
lytically on s.

IP(x, D)u(x) f(x)
(9) ((/s)u(x)lo=/(x ), where ]--0, ..., m--1 and /(x’) is a

hyperfunction on S 9.
Remark 1. If f(x) depends real analytically on s (Sato [13] 8),

Sato’s fundamental theorem on the regularity of hyperfunction solu-
tions (Sato [14] [16]) assures the real analytic dependence of u(x) on
s. Thus we can consider the restriction of u(x) to S and the above
Cauchy problem (9) makes sense.

Remark 2. Let t be the set of all x e t0 such that any bicharac-
teristic curve of P through x intersects S t9 at some point y and the
portion of the bicharacteristic curve with its end points x and y is con-
tained in 19. Then the solution u(x) of the above Cauchy problem is
unique in Y}. This follows trivially from Theorem 3.3 of Kawai [8].
(Cf. Kawai [10], where a precise version of Holmgren’s theorem is
given. See also Schapira [17] for the usual Holmgren theorem for
hyperfunction solutions.)

As for real analytic solutions we have following theorems.
Theorem 6. Let P(x,D) be globally hyperbolic. Assume that a

relatively compact domain ?2 in V is given in the form {x (x) 0} by a
real valued real analytic function q(x) defined in a neighbourhood of
satisfying grad :/:0 on 12. If the domain [2 satisfies the following
conditions (10) and (11), then P(x, D)(2)=(t9) holds.

If Xo belongs to the boundary of ?2 and P(xo, grad (x)]__o)-0,
(10) then the intersection of the bicharacteristic curve through (Xo,

grad (x)l=o) with 12 is connected.
There exists a family of open sets {N}= which satisfies the
following"
For any point x in the boundary of [2 we can find some ] such
that for any bicharacteristic curve b through (x, )b (9\(x}) gl N(11)
is connected, where N is a neighbourhood of x and is a non-
zero real cotangent vector satisfying P(x, $)=0.

Theorem 7. Let P and non-singular hypersurface S be the same
as in Theorem 5. Let I be a domain in S and tO be {x e VI any
bicharacteristic curve of P through x intersects I}. Then the following
Cauchy problem (12) admits a unique real analytic solution in t for
any real analytic function f(x) defined on Y2 and any real analytic
function in (n-1)-variables g(x’) defined on I.

’P(x, D)u(x) f(x)(12)
(/s)u(x)[=o--g(x’), ]=0, ..., m--1.
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