194. The Completion of Topological Spaces

By Suketaka MITANI University of Osaka Prefecture

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1971)

For a set X, the family consisting of all the filters in X is denoted by F(X). For a topological space X, the collection of all the open sets of X is called a topology of X and denoted by O(X).

Let X be a topological space. If a filter \mathfrak{f} in X is generated by the filter base $\mathfrak{f} \cap O(X)$, then \mathfrak{f} is an *open filter* in X. And the family consisting of all the open filters in X is denoted by OF(X). Specially, for a point x of X, the open filter generated by the filter base $\{V \mid x \in V \in O(X)\}$ is called a *neighborhood system* of x and denoted by $\mathfrak{R}(x)$.

If a topological space X contains its dense subspace Y, then X is said to be an *extension* of Y.

Let a topological space X be an extension of Y. Then, for a point x of X and its neighborhood system $\mathfrak{N}(x)$, $\{V \cap Y \mid V \in \mathfrak{N}(x)\}$ is a trace of x on Y. We get a mapping φ of X into OF(Y) such that, for every $x \in X$, $\varphi(x)$ is the trace of x on Y. This φ is called a trace system of X on Y. And the restriction $\varphi \mid X \setminus Y$ of φ on $X \setminus Y$ is a tracer of X on Y.

If φ is a trace system of an extension X of a topological space Y on Y, then X is said to be *extended* from Y by a tracer $\varphi \mid X \setminus Y$.

The following is the fundamental theorem of the extension theory of topological spaces.

Theorem 1. Let Y be a topological space, X be a set containing Y and φ be a mapping of $X \setminus Y$ into OF(X). Then there exists a topology of X such that X is an extension of which the tracer on Y is φ .

In this paper, instead of this Theorem 1, Theorem 2 will be proved.

Example 1. Let X be the discrete topological space consisting of all the natural numbers, X^* be $X \cup \{\omega_1, \omega_2\}$, $\Re(\omega_1)$ be $\{A \cup \{\omega_1\} | A \subseteq X, X \setminus A \text{ is finite}\}$ and $\Re(\omega_2)$ be $\{A \cup \{\omega_2\} | A \subseteq X, X \setminus A \text{ is finite}\}$. Then X^* is a T_1 extension of X.

Example 2. Let X be the same as Example 1, X^* be $X \cup \{\omega_1, \omega_2\}$, $\mathfrak{N}(\omega_1)$ be $\{A \cup \{\omega_1, \omega_2\} | A \subseteq X, X \setminus A \text{ is finite}\}$ and $\mathfrak{N}(\omega_2) = \mathfrak{N}(\omega_1)$. Then X^* is an extension of X.

Example 3. Let R be the topological space of all the real numbers and S be the subspace of R consisting of all the rational numbers. Denote a trace of a real number x on S by $\varphi(x)$. If x is a rational

number, put $\Re(x) = \varphi(x)$ and, for every irrational number x, put $\Re(x) = \{V \cup \{x\} \mid V \in \varphi(x)\}$. Then we get a topology of R such that $\Re(x)$ is the neighborhood system of x. This different topology of R is the strongest one in such topologies of R that R is a T_1 extension of which the tracer is $\varphi \mid R \setminus S$.

These three examples show the following.

Proposition. Let X be a set containing a topological space Y and φ be a mapping of $X \setminus Y$ into OF(X). Then a topology of X such that X is an extension of Y of which a tracer is φ is generally not unique.

Let X^* be the completion of a uniform space X and E be the family consisting of all the non-convergent minimal Cauchy filters in X. Then X^* is an extension of X, $X^* = X \cup E$ and the tracer is the identity mapping of E. Furthermore filter \mathfrak{f} in X^* is a Cauchy filter if and only if \mathfrak{f} converges to some point of X^* in X^* . In other words, the topology of X^* determines the Cauchy filters in X^* .

Generally an extension of a topological space Y is not uniquely determined by Y and a tracer. But an extension of Y that satisfies some condition is uniquely determined by Y and its tracer. The completion theory of topological spaces is to find such a condition of the topology.

Let X^* be an extension of a topological space X and φ be the tracer of X^* on X. If X^* has the weakest topology in such topologies of X^* that X^* is an extension of X of which a tracer on X is φ and every subset consisting of only one point of $X^* \setminus X$ is a closed set of X^* , then X^* is an RT_1 extension of X.

Theorem 2. Let X^* be a set containing a topological space X and φ be a mapping of $X^* \setminus X$ into OF(X). Then there exists a topology of X^* such that X^* is an RT_1 extension of X of which the tracer is φ .

Proof. Let N be the family consisting of all the finite subsets of $X^* \setminus X$.

For every open set V of X, put

$$V' = \{x \mid x \in X^* \setminus X, V \in \varphi(x)\}$$

$$V^* = V \cup V'$$

$$\mathfrak{B} = \{V^* \setminus A \mid V \in O(X), A \in N\}.$$

 \mathfrak{B} generates a topology of the set X^* . By this topology, X^* becomes an extension of X such that φ is a tracer of X^* on X and any subset consisting of only one point of $X^* \setminus X$ is closed in X^* .

But, if a topology O of X^* satisfies that X^* is an extension of X, φ is its tracer on X and every subset consisting of only one point of $X^* \setminus X$ is closed in X^* , then O contains this family \mathfrak{B} .

Thus, by the topology of X^* generated by \mathfrak{B} , X^* becomes an RT_1

¹⁾ More precisely Moore-Smith type completion theory.

extension of X of which the tracer is φ .

Theorem 3. An RT_1 extension of a topological space X is uniquely determined by X and its tracer on X.

Proof. Let X^* be an RT₁ extension of X, φ be its tracer on X and N be the family consisting of all the finite subsets of $X^* \backslash X$. For every open set V of X, put

$$V^* = \{x \mid \varphi(x) \ni V, x \in X^* \setminus X\} \cup V$$

 $\mathfrak{B} = \{V^* \setminus A \mid V \in O(X), A \in N\}.$

 $O(X^*)$ contains \mathfrak{B} . But \mathfrak{B} generates a topology of X^* such that every subset consisting of only one point of $X^* \setminus X$ is closed and the tracer on X is φ .

So $O(X^*)$ is generated by \mathfrak{B} .

Thus $O(X^*)$ is uniquely determined by X and φ .

Example 4. The RT₁ extension of topological spaces is a completion of topological spaces.

References

- [1] N. Bourbaki: Topologie Générale. Paris (1940), 3rd ed. (1960).
- [2] H. Cartan: Theorie des filtres. C. R. Acad. Sci. Paris, 205, 595-598 (1937).
- [3] L. W. Cohen: Uniformity property in topological space satisfying the first denumerability postulate. Duke Math. Jour., 3, 610-615 (1937).
- [4] —: On imbedding a space in a complete space. Duke Math. Jour., 5, 174-183 (1939).
- [5] H. J. Kowalsky: Topological Spaces. New York (1964).
- [6] S. Mitani: The completion of a convergence space in the sense of H. R. Fisher. Proc. Japan Acad., 44, 667-671 (1968).
- [7] E. Moore and H. Smith: A general theory of lmits. Amer. Jour. Math., 44, 102-121 (1922).
- [8] J. Nagata: Some aspects of extension theory in general topology. Contributions to Extension Theory of Topological Structure, 157-161. Berlin (1969).
- [9] J. W. Tukey: Convergence and Uniformity in Topology. Princeton (1940).
- [10] A. Weil: Sur les espaces à structure uniforme et sur la topologie générale. Paris (1937).