183. On Weakly Compact Spaces

By Masao Sakai

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1971)

A topological space S is said to be AU-weakly compact, if every countable open covering of S contains a finite subfamily whose union is deuse in S, and S is said to be MP-weakly compact, if every pairwise disjoint infinite family of open sets O_{α} , $\alpha \in A$, has a point $p \in S$ whose every neighbourhood meets infinitely many O_{α} . The point p is called a cluster point of the family $\{O_{\alpha}\}_{\alpha \in A}$. K. Iseki [1] [2] [3] and S. Kasahara [4] proved the following:

Proposition. The following properties of a regular space S are equivalent:

(1) S is AU-weakly compact.

(2) S is MP-weakly compact.

(3) Every locally finite family of open sets O_{α} contains a finite subfamily whose union covers the union of all O_{α} .

(4) Every locally finite open covering of S contains a finite subcovering.

We shall prove only that $(2) \rightarrow (3)$ using the following:

Lemma. Every point-finite covering of a topological space contains an irreducible subcovering.

This lemma was proved by R. Arens and J. Dugundji [5].

Proof that $(2) \rightarrow (3)$. Let S be a regular MP-weakly compact space and let $\{O_{\alpha}\}_{\alpha \in A}$ be a locally finite family of open sets of S. By the lemma, there is an irreducible subfamily $\{O_{\beta}\}_{\beta \in B}$ such that $\bigcup_{\beta \in B} O_{\beta}$ $= \bigcup_{\alpha \in A} O_{\alpha}$. We shall prove that B is a finite set. Let us assume that B is an infinite set. By the irreducibility of $\{O_{\beta}\}_{\beta \in B}$ for every $\beta \in B$, $O_{\beta} - \bigcup_{r \in B - \{\beta\}} O_r$ is non-empty, then it contains a point p_{β} such that $p_{\beta} \in O_{\beta}$ and $p_{\beta} \in O_{\gamma}$, $\gamma \in B - \{\beta\}$. By the regularity of the space S, every p_{β} has an open neighbourhood V_{β} such that $\bar{V}_{\beta} \subset O_{\beta}$. It is easily seen that for every $\beta \in B$ $p_{\beta} \in V_{\beta}$ and $p_{\beta} \in \overline{V}_{\gamma}$, $\gamma \in B - \{\beta\}$. By the locally finiteness of $\{O_{\beta}\}_{\beta \in B}$, $\bigcup_{\tau \in B - \{\beta\}} \overline{V}_{\tau}$ is closed, then $W_{\beta} = V_{\beta} - \bigcup_{\tau \in B - \{\beta\}} \overline{V}_{\tau}$ is open and contains p_{β} . It is obvious that the open infinite family $\{W_{\beta}\}_{\beta \in B}$ is pairwise disjoint and locally finite. By the property (2), the family $\{W_{\beta}\}_{\beta \in B}$ has at least one cluster point, contrary to the locally finiteness Then B must be a finite set and the proof of of the family $\{W_{\beta}\}_{\beta \in B}$. $(2) \rightarrow (3)$ is completed.

Let S be a topological space. Each family of regularly closed sets \bar{O}_{a} , $\alpha \in A$, of S is called a *regularly closed family*, and each covering of S

composed of regularly closed sets \bar{O}_{α} , $\alpha \in A$, a regularly closed covering.

Theorem. The following properties of a topological space S are equivalent.

(1) S is AU-weakly compact.

(2) Every countable non-empty open family $\{O_n\}_{n=1}^{\infty}$ having the finite intersection property has the non-empty intersection $\bigcap_{n=1}^{\infty} \bar{O}_n$.

(3) S is MP-weakly compact.

(4) Every locally finite family of regularly closed sets \bar{O}_{α} of S contains a finite subfamily whose union covers the union of all \bar{O}_{α} .

(5) Every locally finite regularly closed covering of S contains a finite subcovering.

Proof. In (5), "covering" may be replaced by "countable covering" and "a finite subcovering" by "a proper subcovering". We shall prove that $(1)\rightarrow(2)\rightarrow(3)\rightarrow(4)\rightarrow(5)\rightarrow(3)\rightarrow(1)$. K. Iséki [3] proved that $(1) \rightleftharpoons (2)$ and $(3) \rightarrow (1)$, K. Iséki [1] proved that $(2) \rightarrow (3)$ in topological spaces. It is obvious that $(4)\rightarrow(5)$. We must prove that $(3)\rightarrow(4)$ and $(5)\rightarrow(3)$.

Proof that $(3) \rightarrow (4)$. Let S be a topological space and let $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ be a regularly closed family. Put $S_1 = \bigcup_{\alpha \in A} \bar{O}_{\alpha}$. In virtue of the lemma, there is an irreducible subfamily $\{\bar{O}_{\beta}\}_{\beta \in B}$ such that $S_1 = \bigcup_{\beta \in B} \bar{O}_{\beta}$. We shall prove that B is a finite set. Let us assume that B is an infinite set. For every $\beta \in B$, put $W_{\beta} = O_{\beta} - \bigcup_{r \in B - \{\beta\}} \bar{O}_r$. If $W_{\beta} = \phi$ for some $\beta \in B$, $O_{\beta} \subset \bigcup_{r \in B - \{\beta\}} \bar{O}_r$. By the locally finiteness of $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ the set $\bigcup_{r \in B - \{\beta\}} \bar{O}_r$ is closed, then $\bar{O}_{\beta} \subset \bigcup_{r \in B - \{\beta\}} \bar{O}_r$ contrary to the irreducibility of $\{\bar{O}_{\beta}\}_{\beta \in B}$. Therefore $W_{\beta} \neq \phi$ for any $\beta \in B$. By $W_{\beta} \subset O_{\beta}$, $\{W_{\beta}\}_{\beta \in B}$ is locally finite. It is obvious that $\{W_{\beta}\}_{\beta \in B}$ is a pairwise disjoint open infinite family. By the property (3), $\{W_{\beta}\}_{\beta \in B}$ has at least one cluster point, contrary to the locally finiteness of $\{W_{\beta}\}_{\beta \in B}$. Therefore, B must be a finite set. The proof of $(3) \rightarrow (4)$ is completed.

Proof that $(5) \rightarrow (3)$. Let S be a topological space which does not satisfy the property (3). Then there is a pairwise disjoint open infinite family $\{O_n\}_{n=1}^{\infty}$ which has no cluster point. Therefore, the family $\{O_n\}_{n=1}^{\infty}$ is locally finite. If $\bigcup_{n=1}^{\infty} \bar{O}_n = S$, the family $\{\bar{O}_n\}_{n=1}^{\infty}$ is a locally finite regularly closed infinite covering which has no proper subcovering. If $\bigcup_{n=1}^{\infty} \bar{O}_n \neq S$, by the locally finiteness of $\{\bar{O}_n\}_{n=1}^{\infty}$, $S - \bigcup_{n=1}^{\infty} \bar{O}$ is nonempty open. Then the family $\{\overline{S - \bigcup_{n=1}^{\infty} \bar{O}_n, \bar{O}_1, \bar{O}_2, \dots, \bar{O}_n, \dots\}$ is a locally finite regularly closed covering which has no proper subcovering. Thus, the proof of $(5) \rightarrow (3)$ is completed. Suppl.]

References

- K. Iséki: On weakly compact regular spaces. I. Proc. Japan Acad., 33, 252-254 (1957).
- [2] ——: AU-covering theorem and compactness. Proc. Japan Acad., 33, 363– 367 (1957).
- [3] ——: Generalisations of the notion of compactness. Rev. Japan Pures Appl., 6, 31-63 (1961).
- [4] S. Kasahara: On weakly compact regular spaces. II. Proc. Japan Acad., 33, 255-259 (1957).
- [5] R. Arens and J. Dugundji: Remark on the concept of compactness. Portugaliae Math., 9, 141-143 (1950).