178. On Countably R-closed Spaces. I

By Masao Sakai

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1971)

A topological space S is called *countably* R-closed, if for any family $\{G_n\}_{n=1}^{\infty}$ of nonvoid open sets such that $G_n \supset \overline{G}_{n+1}$ for every n, we have $\bigcap_{n=1}^{\infty} G_n \neq \phi$. Z. Frolik [1] proved the following:

Proposition. In any topological space S, the following properties are equivalent:

(i) S is countably R closed.

(ii) Every star-finite open covering of S has a finite subfamily whose union is dense in S.

(iii) Every star-finite open covering of S has a finite subcovering.

(iv) Every star-finite open covering of S is a finite covering.

We shall give other characterizations of countably *R*-closed spaces. In a topological space *S*, a family Φ composed of subsets of *S* is called *locally finite* (*discrete*) if every point *x* has a neighbourhood U(x) which meets only finite members (at most only one member) of Φ , and Φ is called *star-finite* if every member of Φ meets only finite members of Φ . A subset *E* is called *regularly closed* if *E* is the closure of an open set of *S*. A covering of *S* composed of regularly closed sets is called *a regularly closed covering of S*.

Theorem. In any topological space S, the following conditions are equivalent:

(1) S is countably R-closed.

(2) Every locally finite, star-finite, countable, regularly closed covering of S has a finite subcovering.

(3) Every locally finite, star-finite, countable, regularly closed covering of S is a finite covering.

(4) Every locally finite, star-finite, regularly closed covering of S is a finite covering.

(5) Every star-finite open covering of S is a finite covering.

We shall prove that $(1) \rightarrow (2) \rightarrow (3) \rightarrow (1)$ and $(3) \rightarrow (4) \rightarrow (5) \rightarrow (4) \rightarrow (3)$.

Lemma 1. In a topological space S, let $\{\bar{O}_n\}_{n=1}^{\infty}$ be a locally finite, countable, regularly closed covering of S. Then $F_n = \bigcup_{k=n+1}^{\infty} \bar{O}_k$ is closed, $G_n = S - \bigcup_{l=1}^{n} \bar{O}_l$ is open, and $F_n \supset G_n$ for every n.

Lemma 2. Let $\{\bar{O}_n\}_{n=1}^{\infty}$ be a locally finite, star-finite, countable, regularly closed covering of S. For every n, there is $m (\geq n+1)$ such that $F_m \subset G_n$.

M. SAKAI

Proof that (1) \rightarrow (2). Let S be a topological space and let $\{\bar{O}_n\}_{n=1}^{\infty}$ be a locally finite, star-finite, countable, regularly closed covering of S. Suppose that $\{\bar{O}_n\}_{n=1}^{\infty}$ has no finite subcovering of S. Then $S - \bigcup_{l=1}^n \bar{O}_l \neq \phi$ i.e. $G_n \neq \phi$ for every *n*. Put $n_1=1, F_{n_1}=\bigcup_{k=2}^{\infty} \bar{O}_k$ and $G_{n_1}=S-\bar{O}_1$. By Lemma 1, F_{n_1} is closed, G_{n_1} is open, and $F_{n_1} \supset G_{n_1}$. Suppose that a sequence $\{n_t\}_{t=1}^s$ has defined such that $n_1 < n_2 < \cdots < n_s$, F_{n_t} $(1 \leq t \leq s)$ are closed, G_{n_t} $(1 \le t \le s)$ are nonvoid open, and $F_{n_1} \supset G_{n_1} \supset F_{n_2} \supset G_{n_2} \supset \cdots$ $\supset F_{n_s} \supset G_{n_s}$. By Lemma 2, for n_s there is $m (\geq n_s + 1)$ such that $G_{n_s} \supset F_m$ $\supset G_m$ where F_m is closed and G_m is nonvoid open. Put $n_{s+1} = m$. Thus we have a sequence $\{n_t\}_{t=1}^{s+1}$ such that $n_1 < n_2 < \cdots < n_s < n_{s+1}, F_{n_t}$ $(1 \le t \le s+1)$ are closed, G_{n_t} $(1 \le t \le s+1)$ are nonvoid open, and $F_{n_1} \supset G_{n_1} \supset \cdots \supset F_{n_{s+1}}$ $\supset G_{n_{s+1}}$. Then there is a sequence $\{n_t\}_{t=1}^{\infty}$ such that $n_1 < n_2 < \cdots < n_t < \cdots$, F_{n_t} $(1 \leq t < \infty)$ are closed, G_{n_t} $(1 \leq t < \infty)$ are nonvoid open, and F_{n_1} $\supset G_{n_1} \supset \cdots \supset F_{n_t} \supset G_{n_t} \supset \cdots \quad \text{i.e.} \quad G_{n_1} \supset \overline{G}_{n_2} \supset G_{n_2} \supset \cdots \supset G_{n_t} \supset \overline{G}_{n_{t+1}} \supset \cdots$ If the space S were countably R-closed, we should have $\bigcap_{t=1}^{\infty} G_{n_t} \neq \phi$. Then, there should exist a point x_0 such that $x_0 \in G_{n_t}$ i.e. $x_0 \in \bigcup_{l=1}^{n_t} \overline{O}_l$ for every t. Then $x_0 \in \bigcup_{l=1}^{\infty} \overline{O}_l$, contrary to that $\{\overline{O}_n\}_{n=1}^{\infty}$ is a covering of S. Therefore S may not be countably R-closed.

Proof that $(2) \rightarrow (3)$. Let *S* be a topological space and let us assume that any locally finite, star-finite, countable, regularly closed covering $\{\bar{H}_n\}_{n=1}^{\infty}$ of *S*, has a finite subcovering $\{\bar{H}_{n_k}\}_{k=1}^{m}$. If infinitely many different \bar{H}_n were not nonvoid, there should exist a member \bar{H}_{n_k} which met infinitely many different nonvoid \bar{H}_n . This is contrary to the condition that $\{\bar{H}_n\}_{n=1}^{\infty}$ is star-finite. Then the family $\{\bar{H}_n\}_{n=1}^{\infty}$ must be finite.

Lemma 3. In any topological space S, if there is a family $\{G_n\}_{n=1}^{\infty}$ of open sets where $G_n \supset \overline{G}_{n+1}$ for every n and $\bigcap_{n=1}^{\infty} G_n = \phi$, the family $\{\overline{H}_n\}_{n=0}^{\infty}$, where $H_0 = S - \overline{G}_1$ and $H_n = G_n - \overline{G}_{n+1}$ for every $n (\geq 1)$, is a locally finite, star-finite, regularly closed covering of S.

Proof. Put $K_0 = S - \bar{G}_3$, $K_n = G_n - \bar{G}_{n+3}$ for every $n (\geq 1)$. In the first place, we shall prove that $\bar{H}_0 \subset K_0$, $\bar{H}_n \subset K_{n-1}$ for every $n (\geq 1)$. Since $H_0 = S - \bar{G}_1 \subset S - G_1$ and $S - G_1$ is closed, we have $\bar{H}_0 \subset S - G_1 \subset S - \bar{G}_3 = K_0$. Since $H_n = G_n - \bar{G}_{n+1} \subset \bar{G}_n - G_{n+1}$ and $\bar{G}_n - G_{n+1}$ is closed for every $n (\geq 1)$, we have $\bar{H}_n \subset \bar{G}_n - G_{n+1} \subset G_{n-1} - \bar{G}_{n+2} = K_{n-1}$, assuming that $G_0 = S$. Since the family $\{K_n\}_{n=0}^{\infty}$ of open sets is star-finite covering of S and $\bar{H}_0 \subset K_0$, $\bar{H}_n \subset K_{n-1}$ for every $n (\geq 1)$, we have that the family $\{\bar{H}_n\}_{n=0}^{\infty}$ is locally finite and star-finite. Nextly we shall prove that $\{\bar{H}_n\}_{n=0}^{\infty}$ is a covering of the space S. Since the family $\{K_n\}_{n=0}^{\infty}$ is a covering of S and $K_n = G_n - \bar{G}_{n+3} = H_n \cup (\bar{G}_{n+1} - G_{n+1}) \cup H_{n+1} \cup (\bar{G}_{n+2} - G_{n+2}) \cup H_{n+2}$ for every $n (\geq 0)$, it is sufficient to prove that $\bar{G}_n - G_n \subset \bar{H}_n$ for every $n (\geq 1)$. If $\bar{G}_n - G_n = \phi$, it is trivial. If $\bar{G}_n - G_n \neq \phi$, let x be an arbitrary point of $\bar{G}_n - G_n$. Since $x \in \bar{G}_n - G_n \subset G_{n-1} - \bar{G}_{n+1}$ and $G_{n-1} - \bar{G}_{n+1}$ is open, $G_{n-1} - \bar{G}_{n+1}$ is a neighbourhood $V_1(x)$ of x. Since $x \in \bar{G}_n - G_n \subset \bar{G}_n$, for Suppl.]

any neighbourhood V(x) of x, we have $V(x) \cap V_1(x) \cap G_n \neq \phi$. Hence, for any neighbourhood V(x) of x,

$$V(x) \cap H_n = V(x) \cap (G_n - \bar{G}_{n+1}) = V(x) \cap (G_{n-1} - \bar{G}_{n+1}) \cap G_n$$

= $V(x) \cap V_1(x) \cap G_n \neq \phi$.

Then $x \in \overline{H}_n$ i.e. $\overline{G}_n - G_n \subset \overline{H}_n$. Thus we have proved that $\{\overline{H}_n\}_{n=0}^{\infty}$ is a covering of the space S.

Proof that $(3) \rightarrow (1)$. Let us assume that in a topological space S any locally finite, star-finite, countable, regularly closed covering $\{\bar{O}_n\}_{n=1}^{\infty}$ of S is a finite covering. If there is a family $\{G_n\}_{n=1}^{\infty}$ of open sets where $G_n \supset \bar{G}_{n+1}$ for every n and $\bigcap_{n=1}^{\infty} G_n = \phi$, we put $H_0 = S - \bar{G}_1, H_n = G_n - \bar{G}_{n+1}$ for every $n (\geq 1)$. By Lemma 3, the family $\{\bar{H}_n\}_{n=0}^{\infty}$ is a locally finite, star-finite countable, regularly closed covering of S. Then, by the above assumption of the space S, the covering $\{\bar{H}_n\}_{n=0}^{\infty}$ is a finite covering. Hence, there is N such that for every $n \geq N$, $\bar{H}_n = \phi$ i.e. $H_n = \phi$ from which we have $G_n = \bar{G}_{n+1}$. In the proof of Lemma 3, $\bar{G}_n - G_n \subset \bar{H}_n$ for every $n (\geq 1)$, then we have $\bar{G}_n - G_n = \phi$ i.e. $\bar{G}_n = G_n$ for every $n \geq N$. Therefore, we have $\bar{G}_N = G_N = \bar{G}_{N+1} = G_{N+1} = \cdots$. Then we have $\bigcap_{n=1}^{\infty} G_n = \phi$, we have $G_N = \phi$. Then for any family $\{G_n\}_{n=1}^{\infty}$ of nonvoid open sets such that $G_n \supset \bar{G}_{n+1}$ for every n, we must have $\bigcap_{n=1}^{\infty} G_n \neq \phi$, that is, the space S must be countably R-closed.

Lemma 4. Let $\{\bar{O}_{a}\}_{a \in A}$ be a locally finite, star-finite, regularly closed covering of any topological space S. We have the following properties.

(i) The family $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ is decomposed into components $\{K_{r}\}_{r \in \Gamma}$, where $K_{r} = \{\bar{O}_{\alpha}\}_{\alpha \in A_{r}}$ and $K_{r}(\gamma \in \Gamma)$ are pairwise disjoint.

(ii) The family $K_{\gamma} = \{\bar{O}_{\alpha}\}_{\alpha \in A_{\gamma}}$ is a countable family for every γ .

(iii) The union $R_{\gamma} = \bigcup_{\alpha \in A_{\gamma}} \bar{O}_{\alpha}$ is open and closed for every γ .

(iv) The family $\{R_r\}_{r \in r}$ of open and closed sets is a discrete covering of S.

Proof of (i). Let \bar{O}_{α} be an arbitrary member of $\{\bar{O}_{\alpha}\}_{\alpha \in A}$. Let us define $S^n(\bar{O}_{\alpha})$ for $n=1, 2, \cdots$ as follows:

$$S^{1}(\bar{O}_{a}) = \bigcup_{\beta} \{ \bar{O}_{\beta} ; \bar{O}_{\beta} \cap \bar{O}_{a} \neq \phi, \ \beta \in A \},$$

 $S^{n+1}(\bar{O}_{a}) = \bigcup_{\beta} \{ \bar{O}_{\beta} ; \bar{O}_{\beta} \cap S^{n}(\bar{O}_{a}) \neq \phi, \ \beta \in A \}$ for every n .

For any \bar{O}_{α} and \bar{O}_{β} , if there is *n* such that $\bar{O}_{\beta} \subset S^{n}(\bar{O}_{\alpha})$, we denote $\bar{O}_{\beta} \sim \bar{O}_{\alpha}$, which is an equivalence relation. Therefore the family $\{\bar{O}_{\beta}\}_{\beta \in A}$ is decomposed into components $\{K_{\gamma}\}_{\gamma \in \Gamma}$ where $K_{\gamma} = \{\bar{O}_{\beta}\}_{\beta \in A_{\gamma}}$ and $K_{\gamma} \cap K_{\gamma'} = \phi$ for any γ and $\gamma' \ (\gamma \neq \gamma')$.

Lemma 5. In any countably R-closed space S, if a subset E is open and closed, then the subspace E is countably R-closed. (See Z. Frolik [1], p. 217.)

Lemma 6. In a countably R-closed space S, any discrete open covering is a finite covering.

M. SAKAI

Proof that $(3) \rightarrow (4)$. Let S be a topological space having the property (3). By the implication $(3) \rightarrow (1)$, which has been shown, S is countably R-closed. Let $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ be a locally finite, star-finite, regularly closed covering of S. By Lemma 4, the family $\{R_r\}_{r \in \Gamma}$ is a discrete covering of S composed of open and closed sets. By Lemma 6, the family $\{R_r\}_{r \in \Gamma}$ is a finite covering of S. Since the set R_r is open and closed for every γ , by Lemma 5, the subspace R_r is countably R-closed space. By Lemma 4, for every $\gamma \in \Gamma$, the family $K_r = \{\bar{O}_{\alpha}\}_{\alpha \in A_r}$ is a locally finite, star-finite, countable, regularly closed covering of the countably R-closed space R_r . By the implications $(1) \rightarrow (2) \rightarrow (3)$, which have been shown, the family $K_r = \{\bar{O}_{\alpha}\}_{\alpha \in A_r}$ is a finite covering of S.

Proof that $(4) \rightarrow (3)$. It is obvious.

Proof that $(4) \rightarrow (5)$. From the proposition and the implications $(1) \rightleftharpoons (3) \rightleftharpoons (4)$, the implications $(4) \rightleftharpoons (5)$ are obvious. We shall prove directly that $(4) \rightarrow (5)$. Let S be a topological space which has the property (4) and let $\{O_{\alpha}\}_{\alpha \in A}$ be a star-finite open covering of S. It is obvious that the family $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ is a locally finite, star-finite, regularly closed covering of S, from which, by the property (4), the family $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ is finite i.e. the family $\{O_{\alpha}\}_{\alpha \in A}$ is finite, since $\bar{O}_{\alpha} \subset \bigcup_{\beta} \{O_{\beta}; O_{\beta} \cap O_{\alpha} \rightleftharpoons \phi, \beta \in A\}$ for every $\alpha \in A$.

Lemma 7. Let $\{\bar{O}_{\alpha}\}_{\alpha\in A}$ be a locally finite, star-finite, regula^{rly} closed covering of any topological space S and let $S(\bar{O}_{\alpha}) = \bigcup_{\beta} \{\bar{O}_{\beta}; \bar{O}_{\beta} \cap \bar{O}_{\alpha} \neq \phi, \beta \in A\}$ for every \bar{O}_{α} , then we have $\bar{O}_{\alpha} \subset \operatorname{Int} S(\bar{O}_{\alpha})$.

Proof that $(5) \rightarrow (4)$. We shall prove directly that $(5) \rightarrow (4)$. Let S be a topological space which satisfies the condition (5) and let $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ be a locally finite, star-finite, regularly closed covering of S. Put G_{α} = Int $S(\bar{O}_{\alpha})$ for every $\alpha \in A$. It is easily proved that the family $\{S(\bar{O}_{\alpha})\}_{\alpha \in A}$ is a locally finite, star-finite, regularly closed covering of the space S. It is also easily proved that the family $\{G_{\alpha}\}_{\alpha \in A}$ is star-finite. By Lemma 7, $G_{\alpha} \supset \bar{O}_{\alpha}$ for every α , then $\{G_{\alpha}\}_{\alpha \in A}$ is a star-finite open covering of S. By the condition (5), the covering $\{G_{\alpha}\}_{\alpha \in A}$ is finite. Since $S(\bar{O}_{\alpha}) \supset G_{\alpha}, \{S(\bar{O}_{\alpha})\}_{\alpha \in A}$ is a finite covering. Being star-finite, $\{\bar{O}_{\alpha}\}_{\alpha \in A}$ is a finite covering.

References

- Z. Frolik: Generalisations of compact and Lindelöf spaces. Czecho. Math. Jour., 9(84), 172-217 (1958).
- [2] K. Iséki: Generalisation of the notion of compactness. Rev. Math. Pures Appl., 6, 31-63 (1961).