232. A Note on Spaces with a Uniform Base

By Takanori SHIRAKI Ehime University

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 13, 1971)

In this note, we shall consider some properties in connection with the spaces with a uniform base. The notion of a uniform base was introduced by Aleksandrov [1]. A collection \mathcal{B} of open sets in a space X is a *uniform* base if for each $x \in X$, any infinite subset of \mathcal{B} , each member of which contains x, is a local base at x. In [1] it is proved that a space X has a uniform base if and only if X has a development consisting of point-finite open coverings of X. Arhangel'skii [2] obtained that a T_1 -space X has a uniform base if and only if X is an open, compact (continuous) image of some metric space. From these facts, it is known that a T_1 -space X has a uniform base if and only if X is a metacompact (= point-paracompact), developable space. Also it is clear that a space with a uniform base has a σ -point-finite base. However, Example 6.4 of [8] shows that the converse of this result is not true in general (cf. [3]). Spaces are assumed to be T_1 .

1. Characterizations of spaces with a uniform base. Recently the author has been informed that F. Siwiec has proved the following: A T_1 -space X has a uniform base if and only if X has a σ -point-finite base and each closed set of X is a G_s -set, and that he has asked to prove directly that the above condition for X implies X being an open, compact image of a metric space. We shall prove this in the proof of the following Theorem 1 which contains other characterizations of spaces with a uniform base.

Theorem 1. For a T_1 -space X, the following conditions are equivalent:

1) X is an open, compact image of a metric space,

2) X is a metacompact Σ -space with a point-countable base,

3) X is a w Δ -space with a σ -point-finite base,

4) X is a Σ^* -space with a σ -point-finite base.

Proof. 1) \rightarrow 2). It is easy to show that X has a development $\{ \bigcirc \mathcal{V}_i : i=1, 2, \cdots \}$ consisting of point-finite open coverings of X. Therefore X is metacompact and developable. Since X is a developable space, X has a σ -locally finite closed net and hence is a Σ -space.

2) \rightarrow 3). Since X is a T_1 Σ -space with a point-countable base, X is a developable space by [16, Corollary 1.3] and hence X is a $w \Delta$ -space. Since X is a metacompact developable space, X has a σ -point-finite base.

Suppl.]

3) \rightarrow 4). Every T_1 space with a σ -point-finite base is an α -space (cf. [11]). Since X is a T_1 w Δ -space and an α -space, X is semi-stratifiable and hence subparacompact. Then X is a Σ -space by [16, Corollary 2.2], therefore X is a Σ^* -space.

4) \rightarrow 1). Since X is a Σ^* -space, X has a Σ^* -net $\{\mathcal{F}_i\}$, that is, each \mathcal{F}_i is a closure-preserving closed covering of X and every sequence $\{x_i\}$ such that $x_i \in C(x, \mathcal{F}_i)$ $(i=1, 2, \dots)$ has a cluster point, where we denote $C(x, \mathcal{F}_i) = \cap \{F : x \in F \in \mathcal{F}_i\}$. Let $\bigcup \mathcal{B}_i$ be a σ -point-finite base such that each \mathcal{B}_i is an open covering of X. For each $x \in X$ and each $n \in \{1, 2, ..., n\}$...}, we put $V_n(x) = X - \bigcup \{F : x \notin F \in \mathcal{F}_i, 1 \le i \le n\}$ and $B_n(x) = \bigcap \{B : X \notin F \in \mathcal{F}_i\}$ $x \in B \in \mathcal{B}_i, 1 \le i \le n$. Let $G_n(x) = B_n(x) \cap V_n(x)$. Then for each $x \in X$, we have the sequence $\{G_n(x)\}$ of open neighborhoods of x, satisfying i) $\bigcap_{n} G_n(x) = x$ and ii) if $x \in G_n(x_n)$ for each n, then the sequence $\{x_n\}$ converges to x. Therefore X is semi-stratifiable by Creede [9]. Since X is semi-stratifiable, each closed set of X is a G_{δ} . We shall prove directly that X is an open compact image of a metric space. For each n and each k, let $U_{nk} = \left\{ U: U = \bigcap_{i=1}^{k} B_i \neq \phi, B_i$'s are distinct elements of $\mathcal{B}_n \right\}$ and let $U_{nk} = \bigcup \{ U: U \in \mathcal{U}_{nk} \}$. Since $X - U_{nk}$ is a G_{δ} -set, we have $X-U_{nk}=\bigcap_{i=1}^{n}V_{nkj}$, where V_{nkj} is an open set of X for each j. Let U_{nkj} $=\mathcal{U}_{nk}\cup\{V_{nkj}\}$. Then it is a point-finite open covering of X. We order the collection $\{U_{nkj}: n, k, j=1, 2, \dots\}$ in a sequence $\{\mathcal{L}_i: i=1, 2, \dots\}$ and denote $\mathcal{L}_i = \{ U_{\alpha} : \alpha \in \Omega_i \}$ for each *i*. Then $\{ \mathcal{L}_i \}$ has the following property: For each $x \in X$, if $x \in U_{\alpha_i} \in \mathcal{L}_i$ $(i=1, 2, \dots)$, then $\{U_{\alpha_i}: i=1, \dots\}$ 2, \cdots } is a local base of x. Let $\prod \Omega_i$ be the product space, where Ω_i is endowed with the discrete topology, and let $A = \{a = (\alpha_i) \in \prod \Omega_i : \{U_{\alpha_i} : A = \{a \in \alpha_i\} \in M\}$ $i=1, 2, \dots$ is a local base at some point of X. Then A is clearly a zerodimensional metric space. We define a mapping f from A to X such that $f(a) = \bigcap_{i=1}^{\infty} U_{\alpha_i}$, where $a = (\alpha_i)$. It is not so hard to see that f is continuous, open and surjective. Since $f^{-1}(x) = \prod_i \{\alpha \in \Omega_i : x \in U_\alpha\}$ and $\{\alpha \in \Omega_i : x \in U_{\alpha}\}$ is finite, $f^{-1}(x)$ is compact. Hence f is a compact mapping, which completes the proof.

2. Spaces with a weak G_{δ} -diagonal.

A space X is said to have a weak G_{δ} -diagonal if there exists a sequence $\{\mathcal{G}_n\}$ of collections of open subsets of X such that for any pair of distinct points x, y of X there is an n satisfying St $(x, \mathcal{G}_n) \neq \phi$ and $y \notin$ St (x, \mathcal{G}_n) . A space X is quasi-developable if there exists a sequence $\{\mathcal{G}_n\}$ of collections of open subsets of X such that for any $x \in X$ and any open set U containing x there is an n satisfying $\phi \neq$ St $(x, \mathcal{G}_n) \subset U$ (cf. [4]). A space X has a θ -T₁-cover if there exists a sequence $\{\mathcal{C}_n\}$ of collections of open subsets of X such that for any pair of distinct points x, y of X, there is an n such that a) x is in at most finite elements of \mathbb{CV}_n and b) $x \in V$ and $y \notin V$ for some $V \in \mathbb{CV}_n$ (cf. [11]).

Proposition 1. If a T_1 -space X satisfies one of the following conditions, then X has a weak G_s -diagonal.

i) X has a G_{s} -diagonal,

ii) X is quasi-developable,

iii) X has a θ -T₁-cover (especially, a θ -base).

Proof. The proof for the case i) is evident by a theorem due to Ceder [7]. In case ii), since X is a quasi-developable T_1 -space, X has a weak G_{δ} -diagonal. In case iii), X has a θ - T_1 -cover $\{\mathcal{CV}_i\}$. For each n and k, we set $\mathcal{U}_{nk} = \left\{ U \colon U = \bigcap_{i=1}^{k} V_{\alpha_i} \neq \phi, V_{\alpha_i} \right\}$ are distinct elements of $\mathcal{CV}_n \right\}$. If we order $\{\mathcal{U}_{nk} \colon n, k = 1, 2, \cdots\}$ into a sequence, it can easily be seen that X has a weak G_{δ} -diagonal, which completes the proof.

Proposition 2. If a space X has a weak G_s -diagonal and each closed set of X is a G_s , then X has a G_s -diagonal.

Proof. Since X has a weak G_{δ} -diagonal, there is a sequence $\{\mathcal{G}_n\}$ by the definition. Let $G_n = \bigcup \{G : G \in \mathcal{G}_n\}$ and $G_n = \bigcup_{i=1}^{\infty} F_{ni}$, where F_{ni} is a closed set of X for each *i*. If we set $\mathcal{U}_{ni} = \mathcal{G}_n \cup \{X - F_{ni}\}$ and order $\{\mathcal{U}_{ni} : n, i = 1, 2, \cdots\}$ into a sequence, then it is shown that X has a G_{δ} -diagonal by this sequence, which completes the proof.

The following Theorem 2 is a generalization of [6, Proposition 2.9] and [4, Theorem 1].

Theorem 2. A regular space X has a uniform base if and only if X is a metacompact $w\Delta$ -space with a weak G_{s} -diagonal.

Proof. Since the proof of 'only if' part is evident, we prove 'if' part. If each closed set of X is shown to be a G_{δ} , then X has a G_{δ} diagonal, by Proposition 2. Then X has a uniform base by [16, Corollary 5.5]. Therefore we prove that each closed set F of X is a G_{δ} . We can assume that F has no isolated point. There is a sequence $\{\mathcal{G}_n\}$ of open collections of X by the definition of a weak G_{δ} -diagonal. Since for each $x \in F$, $\{n: \operatorname{St}(x, \mathcal{G}_n) \neq \phi\}$ is infinite, it is denoted by $\{x(i): i=1, 2, \cdots\}$, where x(i) < x(i+1) for each i. We take a set $G(x, x(i)) \in \mathcal{G}_{x(i)}$ for each i such that $x \in G(x, x(i))$. Since X is a $w\Delta$ -space, there is a sequence $\{\mathcal{B}_n\}$ of open coverings of X satisfying the (M)-condition of K. Morita [14]. We take a $B_i(x) \in \mathcal{B}_i$ such that $x \in B_i(x)$ for each i. Let $U_1(x) = G(x, x(1)) \cap B_1(x)$ and let $\mathcal{U}_1 = \{U_1(x): x \in F\}$. Since X is metacompact, we have a point-finite open collection \mathcal{O}_1 of X which refines \mathcal{U}_1 and covers F. Since X is regular, there is an open neighborhood $U_2(x)$ of x such that $\overline{U_2(x)} \subset \bigcap_{i=1}^2 G(x, x(i)) \cap B_2(x) \cap C(x, \mathcal{O}_1)$, where C(x,

1038

 $(\mathcal{V}_1) = \bigcap \{ V : x \in V \in (\mathcal{V}_1) \}$. Let $\mathcal{U}_2 = \{ U_2(x) : x \in F \}$. Then we have an open, point-finite collection \mathcal{CV}_2 of X which refines \mathcal{U}_2 and covers F. Then there is an open neighborhood $U_3(x)$ of x such that $\overline{U_3(x)} \subset \bigcap G(x,$ $x(j) \cap B_3(x) \cap C(x, \mathcal{O}_2)$. Let $\mathcal{O}_3 = \{U_3(x) : x \in F\}$. We repeat this procedure and obtain open, point-finite collections $\{\mathcal{O}_i\}$ of X such that \mathcal{O}_i refines \mathcal{U}_i and covers F. If we set $V_i = \bigcup_{v \in CV_i} V$, then it will be shown that $F = \bigcap_{i=1}^{\infty} V_i$ by an analogous method to the proof of [4, Theorem 1]. Suppose on the contrary. We have a point $y \in \bigcap V_i - F$. For each $V \in \mathcal{V}_i$ such that $y \in V$, we have that $V \subset U_i(x_v) \in \mathcal{U}_i$ for some $x_v \in F$. Hence $\mathcal{U}_i(y) = \{U_i(x_v) : y \in V \in \mathcal{U}_i\}$ $(i=1, 2, \dots)$ is a finite subcollection of \mathcal{U}_i such that the closure of each element of $\mathcal{U}_{i+1}(y)$ is a subset of some element of $\mathcal{U}_i(y)$ for each *i*. Then there is $\{U_i(x_i): i=1, 2, \dots\}$ such that $U_i(x_i) \in U_i(y)$ and $x_i \in F$ and $\overline{U_{i+1}(x_{i+1})} \subset U_i(x_i)$, by [13, Theorem 114]. Since $y \in U_i(x_i) \subset B_i(x_i)$ for each *i*, the sequence $\{x_i\}$ has a cluster point $x \in F$. Hence $x \neq y$. Then there is an n_1 such that $y \notin St(x, \mathcal{G}_{n_1}) \neq \phi$. Since x is a cluster point of $\{x_i\}$, there is a $k > n_1$ such that $x_k \in \text{St}(x, \mathcal{Q}_{n_1})$. Since $x \in \bigcap_i \overline{U_i(x_i)} = \bigcap_i U_i(x_i)$, we have $x \in U_k(x_k) \subset \bigcap_{j=1}^k G(x_k, x_k(j))$, where $n_1 < k \le x_k(k)$. Then we have that $y \in U_k(x_k) \subset G(x_k, n_1) \subset St(x, \mathcal{G}_{n_1})$, which is a contradiction. This implies that each closed set of X is a G_{i} , and hence we complete the proof.

The following theorem is a generalization of the well-known metrization theorem due to Okuyama-Borges.

Theorem 3. A Hausdorff space X is metrizable if and only if X is a paracompact M-space with a weak G_{δ} -diagonal.

Proof. Necessity is obvious. Sufficiency. By Theorem 2, X is a paracompact developable space. Hence X is metrizable.

Corollary 4. A compact Hausdorff space with a weak G_{δ} -diagonal is metrizable.

3. Spaces with a σ -locally countable base. A space X is weakly θ -refinable if each open cover U of X has an open refinement $\mathcal{V} = \bigcup_i \mathcal{V}_i$ such that if $x \in X$, there is an n such that $\{V \in \mathcal{V}_n : x \in V\}$ is nonempty and finite (cf. [5]). A base \mathcal{B} of a space X is a θ -base if $\mathcal{B} = \bigcup_i \mathcal{B}_n$, where each \mathcal{B}_n is an open collection of X, and for each $x \in X$ and each open neighborhood U of x, there is an n such that x is in at most finite members of \mathcal{B}_n and $x \in B \subset U$ for some $B \in \mathcal{B}_n$ (cf. [17]).

Fedorčuk [10] proved that a Hausdorff space X is metrizable if and only if X is paracompact and has a σ -locally countable base.

Theorem 5. If a space X has a σ -locally countable base, then the following are true:

- i) if X is weakly θ -refinable, then X has a θ -base,
- ii) if X is metacompact, then X has a σ -point-finite base.

Proof. ii) is proved by an analogous method to the proof of [10, Theorem 3]. Let us prove i). Let $\bigcup \mathscr{B}_n$ be a σ -locally countable base, and for each n and $x \in X$, let $U_n(x)$ be an open neighborhood of x such that $U_n(x)$ meets at most countable elemets of \mathcal{B}_n . Then $\{U_n(x): x \in X\}$ has an open refinement $\bigcup_{k} \mathcal{W}_{nk}$ by the definition of the weak θ -refinability. Let $CV_{nk} = \{V_{nk\alpha} : \alpha \in \Omega_{nk}\}$ and for each r of natural numbers let $\mathcal{G}_{nkr} = \left\{ G : G = \bigcap_{i=1}^{r} V_{nk\alpha_i} \neq \phi, V_{nk\alpha_i} \text{'s are distinct } r \text{ elements of } \mathcal{V}_{nk} \right\}.$ For each $G \in \mathcal{G}_{nkr}$, we can write $B_j(G)$, $j=1, 2, \cdots$, all the elements of \mathcal{B}_n which meet G, and we set $\mathcal{G}_{nkrj} = \{G \cap B_j(G) : G \in \mathcal{G}_{nkr}\}$. If we order $\{\mathcal{G}_{nkrj}: n, k, r, j=1, 2, \cdots\}$ into a sequence, then it is seen to be a θ -base of X as follows: If for any $x \in X$ and any open neighborhood U of x, there is an *n* such that $x \in B \subset U$ for some $B \in \mathcal{B}_n$. Then there is a *k* such that x is in at most finite members, for instance V_{nka_i} $(i=1, 2, \dots, r)$, of \mathcal{O}_{nk} . Therefore we have $x \in \bigcap_{i=1}^{r} V_{nk\alpha_i} = G \in \mathcal{G}_{nkr}$. Since $B = B_j(G)$ for some j, we have that $x \in G \cap B_j(G) \subset U$, where $G \cap B_j(G) \in \mathcal{G}_{nkrj}$. Since the element of \mathcal{G}_{nkrj} which contains x is one and only one, it has been proved that $\{\mathcal{G}_{nkrj}\}$ is a θ -base of X. This completes the proof.

Corollary 6. Let X be a metacompact space with a σ -locally countable base. If X is a w Δ -space or a Σ^* -space, then X has a uniform base.

Proof. By Theorem 5 ii), X has a σ -point-finite base. Hence X has a uniform base by Theorem 1.

References

- P. S. Aleksandrov: On the metrization of topological spaces. Bull. Acad. Polon., Sci. Sér. Sci. Math. Astr. Phys., 8, 135-140 (1960).
- [2] A. Arhangel'skii: On mappings of metric spaces. Soviet Math. Dokl., 3, 953-956 (1962).
- [3] C. E. Aull: Topological spaces with a σ -point-finite base. Proc. AMS, 29, 411-416 (1971).
- [4] H. R. Bennett: A note on the metrizability of M-spaces. Proc. Japan Acad., 45, 6-9 (1969).
- [5] —: A note on weak θ -refinability. Notices AMS, 18, 677 (1971).
- [6] C. J. R. Borges: On metrizability of topological spaces. Canadian J. Math., 20, 795-804 (1968).
- [7] J. G. Ceder: Some generalizations of metric spaces. Pacific J. Math., 11, 105-126 (1961).
- [8] H. Corson and E. Michael: Metrizability of certain countable unions. Illinois J. Math., 8, 351-360 (1964).
- [9] G. Creede: Concerning semi-stratifiable spaces. Pacific J. Math., 32, 47-54 (1970).

- [10] V. V. Fedorčuk: Ordered sets and the product of topological spaces. Vestnik Moskov Univ., Ser. I, Mat. Meh., 21, 66-71 (1966).
- [11] R. E. Hodel: Moore spaces and w4-spaces (to appear).
- [12] E. Michael: On Nagami's Σ-spaces and some related matters. Proc. Washington State Univ. Conf. 1970, 13-19 (1970).
- [13] R. L. Moore: Foundations of Point Set Theory. AMS Coll. Pub., 13 (1962).
- [14] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [15] K. Nagami: Σ-spaces. Fund. Math., 65, 169-192 (1969).
- [16] T. Shiraki: *M*-spaces, their generalizations and metrization theorems. Sci. Rep. T.K.D., Sect. A, 11, 57-67 (1971).
- [17] J. M. Worrell, Jr., and H. H. Wicke: Characterizations of developable spaces. Canadian J. Math., 17, 820-830 (1965).