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1. Introduction.
Two derivation trees (phrase-markers) are called congruent in [1]

if merely by relabelling of the nonterminal nodes they may be made the
same. A marker is an equivalence class of congruent derivation trees.
In this note we introduce a new type of language, called a covering
language, which can describe the set of markers generated by a context-
free grammar. The intrinsic structure of a context-free grammar G
is characterized by the covering language K(G) of G.

Let G-(N, , P, S) be a context-free grammar with the set of non-
terminal symbols N, the set of terminal symbols 2:, the set of produc-
tions P and the initial symbol S. Each production zr is usually ex-
pressed in a unique way in the following canonical form

X-toYt. tn_Yntn
where X and Y, (l<_i<_n) are nonterminal symbols and the t are pos-
sibly empty terminal words. The integer n>_ 0 determines the number
of occurrences of nonterminal symbols at the right side of the produc-
tion u and is said to be the rank of . The rank of a production is
denoted by ae(). For each production ’X-toYt... Yt, let (to, t,
.., t)be an abstract symbol. We shall call this the form of and

the integer n is said to be the rank of this form. The form of 7: will be
denoted by f() and the set of all forms of the productions in P will be
denoted by f(P), i.e. f(P)--(f()lr in P}. We extend f to a length
preserving homomorphism f" P*{f(P)}* by defining f(e)--e and
f(71" 7)--f(71)... f(7).

The notation xy or a’xy means that there exists a left-
most derivation

such that a-..., where in the transition rom x to X/l(O_in)
the production is applied. The word m.. is called the associate
o D and f(rm.... n) is called the form o D.

In this paper, unless stated otherwise, by "grammar" we shall
mean context-free grammar and by "derivation" we shall mean left-
most derivation.

Given a grammar G=(N, 2, P, S), let
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and

L(G)- w in X*I S w, cr in P*

A(G)- r in P*IS w, w in 2;*

K(G)=f(A(G)).
The set L(G) is the context-ree language generated by G. The

set A(G)will be called the associate language of G, and the set K(G)
will be called the covering language of G. Given a grammar G, each
element of A(G) can be regarded as a derivation tree in G, and or
and fl in A(G), f(a)=f() means that a and fl realize the same tree
except for a relabelling ot nonterminal nodes. Thus the set K(G) can
be regarded the set of markers generated by G.

2. Subgrammarso
Let G and G be grammars. I K(G)K(G), then G is said to be

a subgrammar of G and we write GIG.. A subgrammar G ot G. is

said to be spanning if L(G)=L(G.). G and G are structurally equiv-
alent [1], written GG., if GG and GG.

This definition differs rom the definition ot structural equivalence
as used in [1]. It can be shown, although not done here, that these two
definitions of structural equivalence are equivalent.

Example. Let G=({S,X, Y}, [a, b},P,S) and G.=([S,X}, [a, b},
P., S) be grammars, where P and P. consist of the ollowing produc-
tions.

P 7 SaXb v Sab r XYXb
7r X--,aSb, r X-.ab r Y-a

P S-,aSb, S-,XSb, ?c S-ab, X--a.
Then we have
A(G) {{}*4}*{U {=}*}
K(G) {(a, b}{(s, s, b}(a}}*(a, b}}*{(ab) (a, b}{(e, e,

L(G1) =L(G) {abln>_ 1}.
Thus G is a spanning subgrammar of G.

A grammar G is said to be inherently ambiguous if all grammars
generating the same language are ambiguous. A grammar G is said
to be completely ambiguous i any spanning subgrammar of G is am-
biguous. A grammar G is said to be structurally unambiguous [1] if
the restriction f/A(G)" A(G)--,K(G) is bijective. By definition it
should be clear that any inherently ambiguous grammar is completely
ambiguous.

Basic results are the following Theorems. Detailed proofs will
appear elsewhere.
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Theorem 2.1. There exists a completely ambiguous grammar
which is not inherently ambiguous.

Theorem 2.2. For any grammar G, there exists structurally un-
ambiguous grammar G’ such that

Theorem 2.3. Le G1, G2 and G3 be arbitrary grammars such $ha$

GIG3 and G2G3. Then it is unsolvable to determine whether L(GI)

--L(G2).
Corollary. Le$ GI be a subgrammar of G2. Then i$ is unsolvable

whether G is a spanning subgrammar of G.
Theorem 2.4. Let G1, G2 and G3 be grammars such that GG

and GG, and let G be unambiguous. Then it is solvable to deter-

mine whether L(G)-L(G2).
Theorem 2.5 It is unsolvable to determine for an arbitrary

grammar G where G is completely ambiguous.
3. Graded context-free languages.
In this section we reduce consideration o a covering language to

consideration o the language generated by a new type o grammar,
called graded grammar.

By a graded set we mean a set X with a map a’X--.N{O, 1, 2,
..}. We denote by X the set a-(n), a is called the grading map o

X. For a in X, a(a) is called the rank o a. A finite graded set is
called a graded alphabet. Thus, in a grammar G--(N, , P, S), P will
be treated as a graded alphabet with the grading map

Let X be any set. We denote by [X*] the set o all n-tuples of
words over X, i.e., [X*]-2:*... X* (n-times). A subset
__[X*] is called a stencil set over X if is graded by the condition

A [X*]+ or all n_> 0.
A finite stencil set is called a stencil alphabet. We henceorth

treat each element o A as an abstract symbol, and, in a grammar G
=(N, X, P, S), the set f(P) will be treated as a stencil alphabet over X.
Note that zr and f(Tr) have the same rank or each zr in P.

Let X be a graded set. The set X of trees over is defined by
the ollowing undamental inductive definition.

(i) IaisinX0, thenaisin
(ii) Ifn0, ain2:ander,...,ainXr,then

al. n is’ in
A graded grammar is a grammar G=(N, , P, S) in which
(i) 2: is a graded alphabet
(ii) each production in P is o the orm X-aY...Y(), where

X and Y (l <_ i <_ a(a)) are in N, a is in X and a(a) is the rank o a.
A set L is a graded context-free language i L=L(G)or some

graded grammar G.
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Theorem 3.1. Let A be a stencil alphabet over X, and let LcA*.
Then L is a graded context-free language if and only if L=K(G) /or
some grammar G with the terminal alphabet X.

Theorem 3.2. For any grammar G, A(G) is a graded context-free
language.

A graded pushdown automaton (abbreviated g-pda) is a pushdown
automaton M=(K, , F, , qo, Zo, F) in which

i) is a graded alphabet
ii) (p, a, Z)_K F() for all (p, a, Z) in K (Z (J {e}) F,

where a(a) is the rank o a for each a in X and a(e)= 1.
For each g-pda M we define T(M), the language accepted by empty

store, to be

T(M) {w in X* (q0, w, Z0)-*(q, e, e), q in F}.
Theorem 3.3. L is a graded context-free language if and only if

L= T(M) for some g-pda M.
Theorem 3.4. Let M1 be a g-pda. Then there exists a deter-

ministic e-free g-pda M with T(M)= T(M).
Corollary 1. Let be a stencil alphabet.

ing language and let RcA* be a regular set.
()
()
()
(iv)
(v)

Let LA* be a cover-
Then

LA
Ar--L is a covering language
L is a deterministic context-free language
*--L is a deterministic context-free language
L R is a covering language.

Corollary 2. The family of covering language is closed under
union, intersection and relative complementation.

Let 2 and be graded alphabets with grading map a and a.,
respectively. A length preserving homomorphism h" ** is said
to be a projection i a(a)-a(h(a)) or all a in X.

Corollary 3. The family of covering languages is closed under
projections.
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