129. One Condition for R(K) = A(K)

By Yuko Kobayashi

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1972)

We will show here one condition to coincide A(K), all continuous functions on the compact plane set K which are analytic in \mathring{K} , and R(K), all those functions on K which are approximable by rational functions with poles off K. This sharpens the result of Theorem 4.1 in [3].

Let U be a bounded open set in the complex plane C, \overline{U} be the closure of U, and ∂U be the boundary of U. Let A(U) be all continuous functions on \overline{U} which are analytic in U and R(U) be all those functions which are approximable uniformly on \overline{U} by rational functions with poles off \overline{U} . Let $H^{\infty}(U)$ be the uniform algebra of all bounded analytic functions on U.

Lemma 1. Let B be a subalgebra in $H^{\infty}(U)$ which contains A(U). Then there is a continuous map from the maximal ideal space M_B of B onto \overline{U} .

Proof. The coordinate function Z belongs to B and the Gelfand transform \hat{Z} of Z is the desired map. For since $B \subseteq H^{\infty}(U)$, every homomorphism in the maximal ideal space of $H^{\infty}(U)$ determines a homomorphism in M_B by restricting it to B. So $\hat{Z}(M_B)$ contains \overline{U} . Suppose $\lambda \notin \overline{U}$, then $(z-\lambda)^{-1} \in A(U)$, that is, $z-\lambda$ is invertible in B. Thus $\varphi(z-\lambda) \neq 0$ for all $\varphi \in M_B$. Hence λ does not belong to $\hat{Z}(M_B)$ and $\hat{Z}(M_B) = \overline{U}$. This completes the lemma.

The analogous result is valid by replacing the algebra A(U) by the algebra R(U).

For B as above, we denote the fibers $M_{\lambda}(B)$ of M_{B} over points $\lambda \in \overline{U}$ by

$$M_{\lambda}(B) = \{ \varphi \in M_B; \varphi(z) = \lambda \}.$$

If $\lambda \in U$, then $M_{\lambda}(B)$ consists of the single homomorphism.

Lemma 2. Let B be as above lemma. Then for each $\lambda \in \partial U$ and for each $f \in A(U), \varphi(f) = f(\lambda)$ for all $\varphi \in M_{\lambda}(B)$.

Proof. As seen in [2], by using the Vitushkin's operator, we can find a bounded sequence $f_n \in A(U)$ which is analytic at $\{\lambda\}$ and the f_n converges uniformly to f on \overline{U} . So it is sufficient to show the case that $g \in A(U)$ is analytic at $\{\lambda\}$. If $g \in A(U)$ is analytic at $\{\lambda\}$, then

$$\frac{g(z)-g(\lambda)}{z-\lambda} \in A(U). \quad \text{Hence } \frac{g(z)-g(\lambda)}{z-\lambda} \in B. \quad \text{Thus } \varphi(g) = g(\lambda)$$

for all $\varphi \in M_B$ and $\varphi(z) = \lambda$. And the lemma is proved.

We define a subalgebra B of $H^{\infty}(U)$ by

$$B = \{f \in H^{\infty}(U); \text{ some } f_n \in R(U) \text{ bounded sequence} \}$$

$$f_n(z) \rightarrow f(z)$$
 pointwise for all $z \in U$.

Let μ_z denote harmonic measure for $z \in U$ on ∂U . We denote the positive measure μ on ∂U by

$$\mu = \sum_i \frac{1}{2^i} \mu_i$$

where μ_i harmonic measure for some fix point $z_i \in U_i$, the components of U. Let σ be a measure on ∂U and let $H^{\infty}(\mu+|\sigma|)$ be the weak-star closure of R(U) in $L^{\infty}(\mu+|\sigma|)$.

Lemma 3. Suppose B is (*) and $C(\partial U) = R(\partial U)$.

Then the operator $f \to \tilde{f}(z) = \int f d\mu_z$, $z \in U$, is an isomorphism between a subalgebra H_{σ} in $H^{\infty}(\mu + |\sigma|)$ for any annihilating measure σ on ∂U for R(U), and B. Moreover, let M be the maximal ideal space of $L^{\infty}(\mu + |\sigma|)$ and \check{Z} be the Gelfand transform of the coordinate function Z in $L^{\infty}(\mu + |\sigma|)$.

Then for $\lambda \in \partial U$ and for $f \in H_{\sigma}$, $f(\check{Z}^{-1}(\lambda)) \subseteq f(M_{\lambda}(B))$.

Proof. We already know the fact that the condition $C(\partial U) = R(\partial U)$ implies that $f \to \check{f}(z), z \in U$, is the continuous, one to one map from $H^{\infty}(\mu+|\sigma|)$ into $H^{\infty}(U)$. $\{\check{f}; f \in H^{\infty}(\mu+|\sigma|)\}$ contains B. For if $f \in B$, then there is a bounded sequence $f_n \in R(U)$ which converges pointwise to f on U. Then by its boundedness, f_n , regarded as an element in $H^{\infty}(\mu+|\sigma|)$, converges weak-star to some $g \in H^{\infty}(\mu+|\sigma|)$, and $\tilde{g}=f$ on U. So if we put $H_{\sigma} = \{f \in H^{\infty}(\mu+|\sigma|); \tilde{f} \in B\}$. Then there is an isomorphism between H_{σ} and B. Hence we can define a map $S: M \to M_B$ by $\varphi(f) = f(S\varphi)$ when $\varphi \in M$ and $f \in H_{\sigma}$. Since Z maps K_B onto \overline{U} by Lemma 1, $\check{Z} = Z \circ S$. Thus $f(Z^{-1}(\lambda)) \subseteq f(Z^{-1}(\lambda)) = f(M_{\lambda}(B))$, and the lemma is proved.

Theorem 4. The following are equivalent.

- (1) R(U) = A(U).
- (2) Each $f \in A(U)$ is pointwise boundedly approximable on U by R(U). $C(\partial U) = R(\partial U)$.

Proof. It is clear that (1) implies (2). So we will only show that (2) implies (1). Let B be (*). Then $B \supseteq A(U)$. It suffices to show that $A(U) \subseteq H^{\infty}(|\sigma|)$, the weak-star closure of R(U) in $L^{\infty}(|\sigma|)$, for any annihilating measure σ on ∂U for R(U). Let σ be as above and $F \in A(U)$. By Lemma 3, the operator $f \to \tilde{f}(z) = \int f d\mu_z, z \in U$, is an isomorphism between an algebra H_{σ} in $H(\mu + |\sigma|)$ and B. Choose $f \in H_{\sigma}$ such that $\tilde{f} = F$ on U. Let φ belong to the maximal ideal space M of $L^{\infty}(\mu + |\sigma|)$. Then by Lemma 2, F, regarded as an element of $H^{\infty}(U)$, assumes the constant value $F(\check{Z}(\varphi))$ on the fiber $M_{\check{z}(\varphi)}(B)$. So again by Lemma 3, we

(*)

obtain $\varphi(f) = \varphi(F)$ for all $\varphi \in M$. Thus f and F coincide, regarded as functions in $L^{\infty}(\mu + |\sigma|)$ and $F \in H \subseteq H^{\infty}(\mu + |\sigma|)$. The theorem is proved.

Corollary 5. Let K be a compact plane set. Then the following are equivalent.

(1) A(K) = R(K).

(2) a) Each $f \in A(K)$ is pointwise boundedly approximable by R(K) on \mathring{K} , the interior of K.

b) $C(\partial U) = R(\partial U)$.

Proof. We define a subalgebra B in $H^{\infty}(\check{K})$ by

 $B = \{ f \in H^{\infty}(K) ; \text{ some } f_n \in R(K), \text{ bounded sequence} \}$

 $f_n(z) \rightarrow f(z)$ pointwise for all $z \in \mathring{K}$.

Then it will suffice to show that there is a continuous map from M_B , the maximal ideal space of B, onto \overline{K} , the closure of K, when K and \overline{K} do not coincide [3]. The coordinate function Z belongs to B and by the method of the proof in Lemma 1, it is clear that $Z(M_B) \supseteq \overline{K}$. If $\lambda \notin \overline{K}$, then there is an open neighborhood V of λ such that V and \overline{K} are disjoint. It follows that the component of $C-\overline{K}$ which contains λ intersects with a component of C-K. Hence $(z-\lambda)^{-1}$ is uniformly approximable by R(K) on \overline{K} . So $(z-\lambda)^{-1} \subseteq B$. Thus $z-\lambda$ is invertible in B and λ does not belong to $\hat{Z}(M_B)$. It concludes $\hat{Z}(M_B) = \overline{K}$. The rest is proved by the same as to in the theorem.

References

- T. Gamelin: Uniform Algebra. Prentice-Hall, Englewood Cliffs, N.J. (1969).
- [2] ——: Localization of the Corona problem. Pacific J. Math., 34, 73-81 (1970).
- [3] T. Gamelin and J. Garnett: Pointwise bounded approximation and Dirichlet algebras. J. Functional Analysis, 8, 360-404 (1971).